Kinetic model of the spatio-temporal turbulence

被引:8
作者
Aristov, Vladimir [1 ]
Ilyin, Oleg [1 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr 119333, Moscow, Russia
关键词
Carleman kinetic system; Chaos;
D O I
10.1016/j.physleta.2010.08.069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the first time the chaotic processes in time and space are investigated explicitly by means of solving the initial-boundary problem for the discrete kinetic equation. The Carleman model is studied. Numerical solutions show series of period-doubling bifurcations and chaotic regimes when decreasing the Knudsen number. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:4381 / 4384
页数:4
相关论文
共 9 条
[1]  
Aristov V. V., 2001, Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows
[2]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[3]  
Burgers J.M., 1948, ADV APPL MECH, V1, P171
[4]  
EULER N, 1989, AUST J PHYS, V42, P1
[5]  
Field RJ., 1985, Oscillations and traveling waves in chemical systems
[6]  
GODUNOV S.K., 1971, Russian Math. Surveys, V26, P1
[7]  
Ilyin O., 2007, COMP MATH MATH PHYS, V47, P1990
[8]   FORMATION OF DISSIPATIVE STRUCTURES IN REACTION-DIFFUSION SYSTEMS - REDUCTIVE PERTURBATION APPROACH [J].
KURAMOTO, Y ;
TSUZUKI, T .
PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (03) :687-699
[9]   Solutions of discrete-velocity Boltzmann equations via Bateman and Riccati equations [J].
Lindblom, O ;
Euler, N .
THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 131 (02) :595-608