A Liouville theorem for high order degenerate elliptic equations

被引:8
作者
Huang, Genggeng [1 ,2 ]
Li, Congming [3 ]
机构
[1] Shanghai Jiao Tong Univ, INS, Dept Math, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200030, Peoples R China
[3] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Degenerate elliptic; Moving plane; Divergence identity; ASYMPTOTIC SYMMETRY; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; CLASSIFICATION;
D O I
10.1016/j.jde.2014.10.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we apply the method of moving plane to the following high order degenerate elliptic equation, (-A)(p)u = u(alpha) in R-+(n+1), n >= 1, where the operator A = y partial derivative(2)(y) + a partial derivative(y) + Delta(x), a >= 1. We get a Liouville theorem for subcritical case and classify the solutions for the critical case. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1229 / 1251
页数:23
相关论文
共 18 条