In this paper, we apply the method of moving plane to the following high order degenerate elliptic equation, (-A)(p)u = u(alpha) in R-+(n+1), n >= 1, where the operator A = y partial derivative(2)(y) + a partial derivative(y) + Delta(x), a >= 1. We get a Liouville theorem for subcritical case and classify the solutions for the critical case. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1229 / 1251
页数:23
相关论文
共 18 条
[1]
[Anonymous], 2004, J DYNAM DIFFERENTIAL
[2]
Axler S., 2001, Harmonic function theory, VVolume 137