Partial synchronization and clustering in a system of diffusively coupled chaotic oscillators

被引:45
作者
Yanchuk, S
Maistrenko, Y
Mosekilde, E [1 ]
机构
[1] Tech Univ Denmark, Dept Phys, Ctr Chaos & Turbulence Studies, DK-2800 Lyngby, Denmark
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
partial synchronization; diffusively coupled chaotic oscillators; clustering; Rossler system;
D O I
10.1016/S0378-4754(00)00276-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We examine the problem of partial synchronization (or clustering) in diffusively coupled arrays of identical chaotic oscillators with periodic boundary conditions. The term partial synchronization denotes a dynamic state in which groups of oscillators synchronize with one another, but there is no synchronization among the groups. By combining numerical and analytical methods we prove the existence of partially synchronized states for systems of three and four oscillators. We determine the stable clustering structures and describe the dynamics within the clusters. Illustrative examples are presented for coupled Rossler systems. At the end of the paper, synchronization in larger arrays of chaotic oscillators is discussed. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:491 / 508
页数:18
相关论文
共 25 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[3]   Diffusively coupled bursters: Effects of cell heterogeneity [J].
De Vries, G ;
Sherman, A ;
Zhu, HR .
BULLETIN OF MATHEMATICAL BIOLOGY, 1998, 60 (06) :1167-1200
[4]  
DESOUSA VM, 1997, PHYS REV E, V56, pR3741
[5]   A modular network for legged locomotion [J].
Golubitsky, M ;
Stewart, I ;
Buono, PL ;
Collins, JJ .
PHYSICA D, 1998, 115 (1-2) :56-72
[6]   SHORT-WAVELENGTH BIFURCATIONS AND SIZE INSTABILITIES IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4185-4188
[7]   SYNCHRONIZATION OF PROXIMAL INTRATUBULAR PRESSURE OSCILLATIONS - EVIDENCE FOR INTERACTION BETWEEN NEPHRONS [J].
HOLSTEINRATHLOU, NH .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1987, 408 (05) :438-443
[8]  
Lading B, 2000, PROG THEOR PHYS SUPP, P164, DOI 10.1143/PTPS.139.164
[9]   Role of the absorbing area in chaotic synchronization [J].
Maistrenko, YL ;
Maistrenko, VL ;
Popovich, A ;
Mosekilde, E .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1638-1641
[10]   Confined chaotic behavior in collective motion for populations of globally coupled chaotic elements [J].
Nakagawa, N ;
Komatsu, TS .
PHYSICAL REVIEW E, 1999, 59 (02) :1675-1682