On the calibration of cohesive parameters for refractories from notch opening displacements in wedge splitting tests

被引:6
作者
Vargas, R. [1 ,3 ]
Canto, R. B. [1 ,2 ]
Hild, F. [3 ]
机构
[1] Univ Fed Sao Carlos, Grad Program Mat Sci & Engn PPGCEM, BR-13565905 Sao Carlos, SP, Brazil
[2] Fed Univ Sao Carlos UFSCar, Dept Mat Engn DEMa, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Paris Saclay, LMT Lab Mecan & Technol, CNRS, ENS Paris Saclay, F-91190 Gif Sur Yvette, France
基金
巴西圣保罗研究基金会;
关键词
Cohesive zone model (CZM); Digital image correlation (DIC); Finite element model updating (FEMU); Notch opening displacement (NOD); Refractory castable; Wedge splitting test (WST); CRACK-PROPAGATION; FRACTURE ENERGY; THERMAL-SHOCK; SIMULATION; IDENTIFICATION; BEHAVIOR; FAILURE;
D O I
10.1016/j.jeurceramsoc.2021.07.011
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cohesive elements are commonly used to describe crack propagation in heterogeneous materials with toughening mechanisms. This work aims to provide a guideline on how these fracture parameters can be calibrated using notch opening displacements (NODs) measured via digital image correlation and force data from wedge splitting tests (WSTs). Weighted finite element model updating was applied to calibrate material and boundary condition parameters in the same framework. The influence of each parameter on force and NOD data are given together with uncertainties for the calibrated parameters. Numerical results were in very good agreement in terms of splitting force, NOD, displacement and gray level residual fields. It is shown that images obtained during WSTs focusing on the crack path (i.e., hiding the loading region) can be used to drive numerical simulations and obtain cohesive parameters.
引用
收藏
页码:7348 / 7361
页数:14
相关论文
共 39 条
  • [1] Identification method for the mixed mode interlaminar behavior of a thermoset composite using displacement field measurements and load data
    Affagard, Jean-Sebastien
    Mathieu, Florent
    Guimard, Jean-Mathieu
    Hild, Francois
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 91 : 238 - 249
  • [2] FEM simulation of the thermo-mechanical behaviour and failure of refractories - a case study
    Andreev, K
    Harmuth, H
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2003, 143 : 72 - 77
  • [3] [Anonymous], 2013, FULL FIELD MEAS IDEN
  • [4] [Anonymous], 1987, METHODS DATA FITTING
  • [5] Barenblatt G.I., 1962, Adv. Appl. Mech., V7, P55
  • [6] THE WEDGE SPLITTING TEST, A NEW METHOD OF PERFORMING STABLE FRACTURE-MECHANICS TESTS
    BRUHWILER, E
    WITTMANN, FH
    [J]. ENGINEERING FRACTURE MECHANICS, 1990, 35 (1-3) : 117 - 125
  • [7] Cabrelon M. D., 2012, Cerâmica, V58, P195, DOI 10.1590/S0366-69132012000200009
  • [8] Comparison between experimental and numerical results of mixed-mode crack propagation in concrete: Influence of boundary conditions choice
    Carpiuc-Prisacari, A.
    Poncelet, M.
    Kazymyrenko, K.
    Hild, F.
    Leclerc, H.
    [J]. CEMENT AND CONCRETE RESEARCH, 2017, 100 : 329 - 340
  • [9] THERMAL-SHOCK AND SIZE EFFECTS IN CASTABLE REFRACTORIES
    COTTERELL, B
    ONG, SW
    QIN, CD
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (08) : 2056 - 2064
  • [10] Fracture and Cohesive Parameter Identification of Refractories by Digital Image Correlation Up to 1200°C
    Doitrand, A.
    Estevez, R.
    Thibault, M.
    Leplay, P.
    [J]. EXPERIMENTAL MECHANICS, 2020, 60 (05) : 577 - 590