Adaptive neural networks control of drug dosage regimens in cancer chemotherapy

被引:0
作者
Floares, A [1 ]
Floares, C [1 ]
Cucu, M [1 ]
Lazar, L [1 ]
机构
[1] Oncol Inst Cluj Napoca, Cluj Napoca 3400, Romania
来源
PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4 | 2003年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the optimal control chemotherapy scheduling in cancer using neural networks. Unlike conventional methods, the proposed neural networks methodology, feedback linearization, is simple and capable of automatically finding the optimal solutions for complex cancer chemotherapy problems. Also, it allows the application of the well developed standard linear control techniques. Simulation results produce excellent control of drug dosage regimens in cancer chemotherapy, which are better than the solutions published in literature. Using specific chemotherapy concepts like dose size, dose intensity, and cumulative dose, allows the design of realistic dosage regimens from the optimal control computed by neural networks.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 17 条
  • [1] [Anonymous], CANCER PRINCIPLES PR
  • [2] BOJKOV B, 1993, HUNG J IND CHEM, V21, P177
  • [3] Dynamic optimization of batch reactors using adaptive stochastic algorithms
    Carrasco, EF
    Banga, JR
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (06) : 2252 - 2261
  • [4] CHANG MY, 2000, THESIS NAT U SINGAPO
  • [5] FLOARES AG, 2000, 3 NAT C NEUR, P20
  • [6] Hagan M. T., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P1642, DOI 10.1109/ACC.1999.786109
  • [7] HAGAN MT, 1999, RECURRENT NEURAL NET, P311
  • [8] He X., 1993, P AM CONTR C S F CAL
  • [9] Hryniuk W M, 1988, Important Adv Oncol, P121
  • [10] Ljung L., 1999, SYSTEM IDENTIFICATIO