Mixed discontinuous Galerkin methods for Darcy flow

被引:92
作者
Brezzi, F
Hughes, TJR
Marini, LD
Masud, A
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
[4] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
关键词
Darcy flow; discontinuous finite elements; stabilizations;
D O I
10.1007/s10915-004-4150-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements ( both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods ( see e. g. D. N. Arnold et al. SIAM J. Numer. Anal. 39, 1749 - 1779 ( 2002) and B. Cockburn, G. E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, ( Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree >= 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods ( namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference "Numerical methods for fluid dynamics V", Clarendon Press, Oxford 1995) and Baumann - Oden Comput. Meth. Appl. Mech. Eng. 175, 311 341 ( 1999).
引用
收藏
页码:119 / 145
页数:27
相关论文
共 22 条
[11]  
BREZZI F, 2004, MATH MOD METH APPL S, V14, P12
[12]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[13]   Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems [J].
Cockburn, B ;
Dawson, C .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :505-522
[14]   Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions [J].
Cockburn, B ;
Dawson, C .
MATHEMATICS OF FINITE ELEMENTS AND APPLICATIONS X, 2000, :225-238
[15]  
COCKBURN B, 2000, LECT NOTES COMPUTATI, V11
[16]  
DAUGE M, 1988, LECT NOTES MATH, V1341, P1
[17]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .5. CIRCUMVENTING THE BABUSKA-BREZZI CONDITION - A STABLE PETROV-GALERKIN FORMULATION OF THE STOKES PROBLEM ACCOMMODATING EQUAL-ORDER INTERPOLATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
BALESTRA, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 59 (01) :85-99
[18]  
HUGHES TJR, UNPUB STABILIZED MIX
[19]   A stabilized mixed finite element method for Darcy flow [J].
Masud, A ;
Hughes, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (39-40) :4341-4370
[20]  
Raviart P.A., 1977, LECT NOTES MATH, V606, P292, DOI DOI 10.1007/BFB0064470