Mixed discontinuous Galerkin methods for Darcy flow

被引:92
作者
Brezzi, F
Hughes, TJR
Marini, LD
Masud, A
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] CNR, IMATI, I-27100 Pavia, Italy
[3] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
[4] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
关键词
Darcy flow; discontinuous finite elements; stabilizations;
D O I
10.1007/s10915-004-4150-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements ( both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods ( see e. g. D. N. Arnold et al. SIAM J. Numer. Anal. 39, 1749 - 1779 ( 2002) and B. Cockburn, G. E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, ( Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree >= 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods ( namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference "Numerical methods for fluid dynamics V", Clarendon Press, Oxford 1995) and Baumann - Oden Comput. Meth. Appl. Mech. Eng. 175, 311 341 ( 1999).
引用
收藏
页码:119 / 145
页数:27
相关论文
共 22 条
[1]  
Agmon S., 1965, Van Nostrand Mathematical Studies
[2]  
[Anonymous], 1976, LECT NOTES PHYS
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]  
BASSI F, 1995, P C NUM METH FLUID D, V5, P295
[6]   Superconvergence and H(div) projection for discontinuous Galerkin methods [J].
Bastian, P ;
Rivière, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (10) :1043-1057
[7]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[8]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[9]  
Brezzi F, 2000, NUMER METH PART D E, V16, P365, DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO
[10]  
2-Y