Lithologic, geomorphic, and climatic controls on sand generation from volcanic rocks in the Sierra Nevada de Santa Marta massif (NE Colombia)

被引:12
作者
Hatzenbuehler, D. [1 ]
Caracciolo, L. [1 ]
Weltje, G. J. [2 ]
Piraquive, A. [3 ]
Regelous, M. [1 ]
机构
[1] Friedrich Alexander Univ FAU Erlangen Nurnberg, GeoZentrum Nordbayern, Schlossgarten 5, D-91054 Erlangen, Germany
[2] Katholieke Univ Leuven, Dept Earth & Environm Sci, Celestijnenlaan 200E, B-3001 Leuven, Belgium
[3] Serv Geol Colombiano, Direcc Asuntos Nucl, Carrera 50 26-20 Bogota, Bogota, DC, Colombia
关键词
Sediment generation; Lithological; tectonic; and climatic controls; Weathering of volcanic rocks; Sediment budget; Quantitative provenance analysis; CHEMICAL-COMPOSITION; NORTHERN ANDES; DETRITAL MODES; IBERIAN RANGE; PROVENANCE; SANDSTONE; BASIN; RIVER; SEDIMENTARY; EVOLUTION;
D O I
10.1016/j.sedgeo.2021.106076
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Tectonics, climate, and lithology are the three main factors controlling the generation and transfer of sediments as well as their textural and compositional signatures. In this paper, we investigate the generation of sands from volcanic rocks in nine drainages with mixed lithological assemblage in a high-relief - subtropical climate setting (Sierra Nevada de Santa Marta, NE Colombia). The integration of geomorphological analysis with sand petrography, and bulk-rock and clay geochemistry allows us to constrain the dynamics regulating the generation of sediments derived from felsic and mafic-intermediate volcanic basement rocks in relation to plutonic and metamorphic lithologies. The petrographic composition of modem fluvial sands from the area is extremely variable (litho-feldspatho-quartzose, feldspatho-quartzose, and quartzose-feldspatho-lithic), but it reveals a strong dilution of (especially mafic) volcanic compositional signals, and a consequent overrepresentation of plutonic and metamorphic lithologies. Traditional chemical weathering indices fail to represent the extent of chemical alteration, but instead seem to favour preservation of provenance signals. Chemical weathering primarily affects feldspars and the ferromagnesian groundmass of mafic volcanic rock fragments. Enrichment of ferromagnesian elements in the day fraction supports the notion that mafic volcanic rock fragments are unstable relative to plutonic and metamorphic rocks. Drainage features (particularly river network and relief) control the abundance of volcanic lithic fragments and the rates and extent of chemical weathering. A linear log-ratio model permits us to quantify sediment generation from volcanic rocks in this mixed-lithology setting. The results indicate that even in the case where volcanic grains are practically absent in the sand fraction, there could still be up to 20% of volcanic rocks in the drainage basin, and in the case that 50% of the sand grains are volcanic, around 75% of drained lithologies are expected to be volcanic. Our results demonstrate that the contribution of volcanic detritus to modern sands systematically underrepresents the areal proportion of volcanics rocks in mixed source areas. Postdepositional diagenetic modifications are likely to alter and/or dissolve volcanic lithic fragments, making accurate reconstruction of sediment provenance even more difficult. Sediment-generation models based on a range of mixed lithologies in various tectonic and climatic settings will be needed to improve estimates of the abundance of volcanic rocks in drainage basins of ancient sediment routing systems. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 98 条
[1]  
Allen P., 2017, SEDIMENT ROUTING SYS
[2]  
Allen P. A., 2005, PRINCIPLES APPL
[3]  
[Anonymous], 1985, NATO-ASI
[4]   Composition of modem stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, Central Spain) [J].
Arribas, J ;
Critelli, S ;
Le Pera, E ;
Tortosa, A .
SEDIMENTARY GEOLOGY, 2000, 133 (1-2) :27-48
[5]   Detrital modes in sedimenticlastic sands from low-order streams in the Iberian Range, Spain: the potential for sand generation by different sedimentary rocks [J].
Arribas, J ;
Tortosa, A .
SEDIMENTARY GEOLOGY, 2003, 159 (3-4) :275-303
[6]   Interpreting carbonate particles in modern continental sands: An example from fluvial sands (Iberian Range, Spain) [J].
Arribas, M. E. ;
Arribas, J. .
SEDIMENTARY PROVENANCE AND PETROGENESIS: PERSPECTIVES FROM PETROGRAPHY AND GEOCHEMISTRY, 2007, (420) :167-179
[7]   Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India [J].
Babechuk, M. G. ;
Widdowson, M. ;
Kamber, B. S. .
CHEMICAL GEOLOGY, 2014, 363 :56-75
[8]   Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes [J].
Barrat, J. A. ;
Zanda, B. ;
Moynier, F. ;
Bollinger, C. ;
Liorzou, C. ;
Bayon, G. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2012, 83 :79-92
[9]  
Benz H.M., 2010, OPEN FILE REPORT
[10]  
Blatt H., 1978, Geologische Rundschau, V67, P1009