Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography

被引:196
作者
Allen, Frances I. [1 ,3 ]
Comolli, Luis R. [4 ]
Kusoglu, Ahmet [5 ]
Modestino, Miguel A. [2 ]
Minor, Andrew M. [1 ,3 ]
Weber, Adam Z. [5 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
关键词
FUEL-CELL APPLICATIONS; PROTON-EXCHANGE MEMBRANES; X-RAY-SCATTERING; IONOMER MEMBRANES; THIN-FILMS; TRANSPORT; MICROSCOPY; SIMULATIONS; ANGLE; MICROSTRUCTURE;
D O I
10.1021/mz500606h
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Nafion is an ion-containing random copolymer used as a solid electrolyte in many electrochemical applications thanks to its remarkable ionic conductivity and mechanical stability. Understanding the mechanism of ion transport in Nafion, which depends strongly on hydration, therefore requires a complete picture of its morphology in dry and hydrated form. Here we report on a nanoscale study of dry versus hydrated as-cast 100 nm Nafion membranes using analytical transmission electron microscopy (TEM) and cryogenic TEM tomography, respectively. For the dry membrane, spherical clusters similar to 3.5 nm in diameter corresponding to the hydrophilic sulfonic-acid-containing phase are identified. In contrast, cryo TEM tomography of the hydrated membrane reveals an interconnected channel-type network, with a domain spacing of similar to 5 nm, and presents the first nanoscale 3D views of the internal structure of hydrated Nafion obtained by a direct-imaging approach.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 35 条
[1]   Fast tomographic reconstruction on multicore computers [J].
Agulleiro, J. I. ;
Fernandez, J. J. .
BIOINFORMATICS, 2011, 27 (04) :582-583
[2]   Chemical mapping of a block copolymer electrolyte by low-loss EFTEM spectrum-imaging and principal component analysis [J].
Allen, F. I. ;
Watanabe, M. ;
Lee, Z. ;
Balsara, N. P. ;
Minor, A. M. .
ULTRAMICROSCOPY, 2011, 111 (03) :239-244
[3]   Surface Structure of Nafion in Vapor and Liquid [J].
Bass, Maria ;
Berman, Amir ;
Singh, Amarjeet ;
Konovalov, Oleg ;
Freger, Viatcheslav .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (11) :3784-3790
[4]   ELECTRON-MICROSCOPY INVESTIGATION OF ION-EXCHANGE MEMBRANES [J].
CEYNOWA, J .
POLYMER, 1978, 19 (01) :73-76
[5]   Effect of Confinement on Structure, Water Solubility, and Water Transport in Nafion Thin Films [J].
Eastman, Scott A. ;
Kim, Sangcheol ;
Page, Kirt A. ;
Rowe, Brandon W. ;
Kang, Shuhui ;
DeCaluwe, Steven C. ;
Dura, Joseph A. ;
Soles, Christopher L. ;
Yager, Kevin G. .
MACROMOLECULES, 2012, 45 (19) :7920-7930
[6]   Modelling of morphology and proton transport in PFSA membranes [J].
Elliott, James A. ;
Paddison, Stephen J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (21) :2602-2618
[7]   A unified morphological description of Nafion membranes from SAXS and mesoscale simulations [J].
Elliott, James A. ;
Wu, Dongsheng ;
Paddison, Stephen J. ;
Moore, Robert B. .
SOFT MATTER, 2011, 7 (15) :6820-6827
[8]   Proton Solvation and Transport in Hydrated Nafion [J].
Feng, Shulu ;
Voth, Gregory A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) :5903-5912
[9]   SMALL-ANGLE X-RAY-SCATTERING STUDY OF PERFLUORINATED IONOMER MEMBRANES .2. MODELS FOR IONIC SCATTERING MAXIMUM [J].
FUJIMURA, M ;
HASHIMOTO, T ;
KAWAI, H .
MACROMOLECULES, 1982, 15 (01) :136-144
[10]   Variational Models of Network Formation and Ion Transport: Applications to Perfluorosulfonate Ionomer Membranes [J].
Gavish, Nir ;
Jones, Jaylan ;
Xu, Zhengfu ;
Christlieb, Andrew ;
Promislow, Keith .
POLYMERS, 2012, 4 (01) :630-655