Dynamic inferential estimation using principal components regression (PCR)

被引:35
作者
Hartnett, MK [1 ]
Lightbody, G [1 ]
Irwin, GW [1 ]
机构
[1] Queens Univ Belfast, Dept Elect & Elect Engn, Control Engn Res Grp, Belfast BT7 1NN, Antrim, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
inferential estimation; subset selection; genetic algorithms; state-space modelling; Principal Variables method;
D O I
10.1016/S0169-7439(98)00021-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal components regression (PCR) is applied to the dynamic inferential estimation of plant outputs from highly correlated data. A genetic algorithm (GA) approach is developed for the optimal selection of subsets from the available measurement variables, thereby providing a method of identifying nonessential elements. The theoretical link between principal components analysis (PCA) and state-space modelling is employed to identify a measurement equation involving the GA-selected subset, which is then used for inferential estimation of the omitted variables. These techniques are successfully demonstrated for the inferential estimation of outputs from a validated industrial benchmark simulation of an overheads condenser and reflux drum model (OCRD). (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 19 条
[1]   MULTIVARIATE SELECTION OF VARIABLES IN INDUSTRIAL QUALITY-CONTROL - OPTIMIZING AVIATION FUEL FINAL CONTROL [J].
ANDRADE, JM ;
PRADA, D ;
MUNIATEGUI, S ;
GOMEZ, B ;
PAN, M .
JOURNAL OF CHEMOMETRICS, 1993, 7 (05) :427-438
[2]  
[Anonymous], 1990, SUBSET SELECTION REG, DOI DOI 10.1007/978-1-4899-2939-6
[3]   MODEL VALIDATION TESTS FOR MULTIVARIABLE NONLINEAR MODELS INCLUDING NEURAL NETWORKS [J].
BILLINGS, SA ;
ZHU, QM .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 62 (04) :749-766
[4]  
*CONTR COMP AID DE, 1990, OV COMD REFL DRUM MO
[5]  
Deane J.M., 1989, J CHEMOMETR, V3, P477
[6]   A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM [J].
DOWNS, JJ ;
VOGEL, EF .
COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) :245-255
[7]  
Goldberg D., 1989, GENETIC ALGORITHMS S
[8]  
JOHANSSON R, 1993, SYSTEM MODELLING IDE
[9]  
JOLIFFE IT, 1972, APPL STAT, V21, P160
[10]  
Jolliffe I. T., 1986, PRINCIPAL COMPONENT, DOI DOI 10.1007/978-1-4757-1904-87