Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization

被引:0
|
作者
Xu, Xing [1 ]
Li, Yuanxiang [1 ]
Wu, Yu [1 ]
Du, Xin [1 ]
机构
[1] Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China
关键词
particle swarm optimization; parameter estimation; asymptotic regression model; nonlinear system; CHAOTIC SYSTEMS; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Asymptotic regression model (ARM) has been widely used in the field of agriculture, biology and engineering, especially in agriculture. Parameter estimation for ARM is a significant, challenging and difficult issue. The modern heuristic algorithm has been proved to he a highly effective and successful technique in parameter estimation of nonlinear models. As a novel evolutionary computation paradigm based on social behavior of bird flocking or fish schooling, particle swarm optimization (PSO) has shown outstanding performance in many real-world applications, for it is conceptually simple and practically easy to be implemented. In the present work, parameters of ARM are estimated on the basis of PSO for the first time. Firstly, PSO is compared with evolutionary algorithm (EA) on seven groups of actual data; PSO, while using less number of function evaluations, can find a parameter set as well as EA. Secondly, we estimate one-dimensional, two-dimensional and three-dimensional parameter by fixing two, one and zero of all parameters of ARM, respectively. Finally, how sampling range and data with Gaussian noise influence on the performance of PSO is considered. Experimental results show that, PSO is a stable, reliable and effective method in parameter estimation for ARM and it's robust to noise.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 50 条
  • [1] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [2] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [3] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1785 - 1799
  • [4] A Particle Swarm Optimization for Parameter Estimation of a Rainfall-Runoff Model
    Bardolle, Frederic
    Delay, Frederick
    Bichot, Francis
    Porel, Gilles
    Doerfliger, Nathalie
    MATHEMATICS OF PLANET EARTH, 2014, : 153 - 156
  • [5] Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model
    Chu, Hone-Jay
    Chang, Liang-Cheng
    JOURNAL OF HYDROLOGIC ENGINEERING, 2009, 14 (09) : 1024 - 1027
  • [6] Particle swarm optimization of multi-linear regression for evapotranspiration estimation model
    Ahmad, Nor Farah Atiqah
    Harun, Sobri
    Hamed, Haza Nuzly Abdull
    Test Engineering and Management, 2019, 81 (11-12): : 858 - 866
  • [7] Multiobjective particle swarm optimization for parameter estimation in hydrology
    Gill, M. Kashif
    Kaheil, Yasir H.
    Khalil, Abedalrazq
    McKee, Mac
    Bastidas, Luis
    WATER RESOURCES RESEARCH, 2006, 42 (07)
  • [8] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [9] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [10] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552