Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization

被引:0
|
作者
Xu, Xing [1 ]
Li, Yuanxiang [1 ]
Wu, Yu [1 ]
Du, Xin [1 ]
机构
[1] Wuhan Univ, State Key Lab Software Engn, Wuhan 430072, Peoples R China
来源
WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09) | 2009年
关键词
particle swarm optimization; parameter estimation; asymptotic regression model; nonlinear system; CHAOTIC SYSTEMS; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Asymptotic regression model (ARM) has been widely used in the field of agriculture, biology and engineering, especially in agriculture. Parameter estimation for ARM is a significant, challenging and difficult issue. The modern heuristic algorithm has been proved to he a highly effective and successful technique in parameter estimation of nonlinear models. As a novel evolutionary computation paradigm based on social behavior of bird flocking or fish schooling, particle swarm optimization (PSO) has shown outstanding performance in many real-world applications, for it is conceptually simple and practically easy to be implemented. In the present work, parameters of ARM are estimated on the basis of PSO for the first time. Firstly, PSO is compared with evolutionary algorithm (EA) on seven groups of actual data; PSO, while using less number of function evaluations, can find a parameter set as well as EA. Secondly, we estimate one-dimensional, two-dimensional and three-dimensional parameter by fixing two, one and zero of all parameters of ARM, respectively. Finally, how sampling range and data with Gaussian noise influence on the performance of PSO is considered. Experimental results show that, PSO is a stable, reliable and effective method in parameter estimation for ARM and it's robust to noise.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 50 条
  • [1] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) : 1785 - 1799
  • [2] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03): : 102 - 111
  • [3] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [4] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [5] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [6] PARAMETER ESTIMATION OF SCHOTTKY-BARRIER DIODE MODEL BY PARTICLE SWARM OPTIMIZATION
    Wang, Kaier
    Ye, Meiying
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (05): : 687 - 699
  • [7] Parameter Estimation of Water Quality Model Using Particle Swarm Optimization Technique
    Wang, Ke
    Wang, Xiaodong
    Shen, Li
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1209 - 1214
  • [8] Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method
    Sun, Jun
    Zhao, Ji
    Wu, Xiaojun
    Fang, Wei
    Cai, Yujie
    Xu, Wenbo
    PHYSICS LETTERS A, 2010, 374 (28) : 2816 - 2822
  • [9] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [10] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +