Dynamics of generalized Palatini theories of gravity

被引:44
作者
Vitagliano, Vincenzo [1 ,2 ]
Sotiriou, Thomas P. [3 ]
Liberati, Stefano [1 ,2 ]
机构
[1] SISSA Int Sch Adv Studies, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy
[3] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England
来源
PHYSICAL REVIEW D | 2010年 / 82卷 / 08期
关键词
F(R); GRAVITY;
D O I
10.1103/PhysRevD.82.084007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is known that in f(R) theories of gravity with an independent connection which can be both nonmetric and nonsymmetric, this connection can always be algebraically eliminated in favor of the metric and the matter fields, so long as it is not coupled to the matter explicitly. We show here that this is a special characteristic of f(R) actions, and it is not true for actions that include other curvature invariants. This contradicts some recent claims in the literature. We clarify the reasons for this contradiction.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Dark energy dominance and cosmic acceleration in first-order formalism [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M ;
Odintsov, SD .
PHYSICAL REVIEW D, 2005, 72 (06)
[2]   Accelerated cosmological models in first-order nonlinear gravity [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M .
PHYSICAL REVIEW D, 2004, 70 (04)
[3]   Accelerated cosmological models in Ricci squared gravity [J].
Allemandi, G ;
Borowiec, A ;
Francaviglia, M .
PHYSICAL REVIEW D, 2004, 70 (10) :103503-1
[4]   Cosmological constraints on f(R) gravity theories within the Palatini approach [J].
Amarzguioui, M. ;
Elgaroy, O. ;
Mota, D. F. ;
Multamaki, T. .
ASTRONOMY & ASTROPHYSICS, 2006, 454 (03) :707-714
[5]  
[Anonymous], ARXIV07104438
[6]  
[Anonymous], 1973, Gravitation
[7]   Curvature singularities, tidal forces and the viability of Palatini f(R) gravity [J].
Barausse, E. ;
Sotiriou, T. P. ;
Miller, J. C. .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (10)
[8]   POLYTROPIC SPHERES IN PALATINI F(R) GRAVITY [J].
Barausse, E. ;
Sotiriou, T. P. ;
Miller, J. C. .
SPANISH RELATIVITY MEETING, ERE2007: RELATIVISTIC ASTROPHYSICS AND COSMOLOGY, 2008, 30 :189-192
[9]   A no-go theorem for polytropic spheres in Palatini f(R) gravity [J].
Barausse, Enrico ;
Sotiriou, Thomas P. ;
Miller, John C. .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (06)
[10]   f(R) cosmology in the first order formalism [J].
Barraco, D ;
Hamity, VH ;
Vucetich, H .
GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (04) :533-547