Recombinant Limb Assay as in Vivo Organoid Model

被引:1
作者
Garcia-Garcia, Roberto Damian [1 ]
Garay-Pacheco, Estefania [1 ]
Marin-Llera, Jessica Cristina [1 ]
Chimal-Monroy, Jesus [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Med Genom & Toxicol Ambiental, Ciudad Univ, Ciudad De Mexico, Mexico
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2022年 / 10卷
关键词
organoid; cell differentiation; patterning; recombinant limbs; limb development; limb organoid; PLURIPOTENT STEM-CELLS; DIFFUSIBLE SIGNALS; BUD; DIFFERENTIATION; MESODERM; GENE; MORPHOGENESIS; EXPRESSION; VITRO; BONE;
D O I
10.3389/fcell.2022.863140
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Organ formation initiates once cells become committed to one of the three embryonic germ layers. In the early stages of embryogenesis, different gene transcription networks regulate cell fate after each germ layer is established, thereby directing the formation of complex tissues and functional organs. These events can be modeled in vitro by creating organoids from induced pluripotent, embryonic, or adult stem cells to study organ formation. Under these conditions, the induced cells are guided down the developmental pathways as in embryonic development, resulting in an organ of a smaller size that possesses the essential functions of the organ of interest. Although organoids are widely studied, the formation of skeletal elements in an organoid model has not yet been possible. Therefore, we suggest that the formation of skeletal elements using the recombinant limb (RL) assay system can serve as an in vivo organoid model. RLs are formed from undissociated or dissociated-reaggregated undifferentiated mesodermal cells introduced into an ectodermal cover obtained from an early limb bud. Next, this filled ectoderm is grafted into the back of a donor chick embryo. Under these conditions, the cells can receive the nascent embryonic signals and develop complex skeletal elements. We propose that the formation of skeletal elements induced through the RL system may occur from stem cells or other types of progenitors, thus enabling the study of morphogenetic properties in vivo from these cells for the first time.
引用
收藏
页数:8
相关论文
共 83 条
  • [31] Lgr6 marks epidermal stem cells with a nerve-dependent role in wound re-epithelialization
    Huang, Sixia
    Kuri, Paola
    Aubert, Yann
    Brewster, Megan
    Li, Ning
    Farrelly, Olivia
    Rice, Gabriella
    Bae, Hyunjin
    Prouty, Stephen
    Dentchev, Tzvete
    Luo, Wenqin
    Capell, Brian C.
    Rompolas, Panteleimon
    [J]. CELL STEM CELL, 2021, 28 (09) : 1582 - +
  • [32] Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver
    Huch, Meritxell
    Gehart, Helmuth
    van Boxtel, Ruben
    Hamer, Karien
    Blokzijl, Francis
    Verstegen, Monique M. A.
    Ellis, Ewa
    van Wenum, Martien
    Fuchs, Sabine A.
    de Ligt, Joep
    van de Wetering, Marc
    Sasaki, Nobuo
    Boers, Susanne J.
    Kemperman, Hans
    de Jonge, Jeroen
    Ijzermans, Jan N. M.
    Nieuwenhuis, Edward E. S.
    Hoekstra, Ruurdtje
    Strom, Stephen
    Vries, Robert R. G.
    van der Laan, Luc J. W.
    Cuppen, Edwin
    Clevers, Hans
    [J]. CELL, 2015, 160 (1-2) : 299 - 312
  • [33] miRNome Profiling of Purified Endoderm and Mesoderm Differentiated from hESCs Reveals Functions of miR-483-3p and miR-1263 for Cell-Fate Decisions
    Ishikawa, Daichi
    Diekmann, Ulf
    Fiedler, Jan
    Just, Annette
    Thum, Thomas
    Lenzen, Sigurd
    Naujok, Ortwin
    [J]. STEM CELL REPORTS, 2017, 9 (05): : 1588 - 1603
  • [34] Identification of osteogenic progenitor cell-targeted peptides that augment bone formation
    Jiang, Min
    Liu, Ruiwu
    Liu, Lixian
    Kot, Alexander
    Liu, Xueping
    Xiao, Wenwu
    Jia, Junjing
    Li, Yuanpei
    Lam, Kit S.
    Yao, Wei
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [35] Intrinsic transition of embryonic stem-cell differentiation into neural progenitors
    Kamiya, Daisuke
    Banno, Satoe
    Sasai, Noriaki
    Ohgushi, Masatoshi
    Inomata, Hidehiko
    Watanabe, Kiichi
    Kawada, Masako
    Yakura, Rieko
    Kiyonari, Hiroshi
    Nakao, Kazuki
    Jakt, Lars Martin
    Nishikawa, Shin-ichi
    Sasai, Yoshiki
    [J]. NATURE, 2011, 470 (7335) : 503 - U92
  • [36] Matrigel: Basement membrane matrix with biological activity
    Kleinman, HK
    Martin, GR
    [J]. SEMINARS IN CANCER BIOLOGY, 2005, 15 (05) : 378 - 386
  • [37] Kuhlman J, 1997, DEVELOPMENT, V124, P133
  • [38] The Organizer and Its Signaling in Embryonic Development
    Kumar, Vijay
    Park, Soochul
    Lee, Unjoo
    Kim, Jaebong
    [J]. JOURNAL OF DEVELOPMENTAL BIOLOGY, 2021, 9 (04)
  • [39] Cerebral organoids model human brain development and microcephaly
    Lancaster, Madeline A.
    Renner, Magdalena
    Martin, Carol-Anne
    Wenzel, Daniel
    Bicknell, Louise S.
    Hurles, Matthew E.
    Homfray, Tessa
    Penninger, Josef M.
    Jackson, Andrew P.
    Knoblich, Juergen A.
    [J]. NATURE, 2013, 501 (7467) : 373 - +
  • [40] Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types
    Loh, Kyle M.
    Chen, Angela
    Koh, Pang Wei
    Deng, Tianda Z.
    Sinha, Rahul
    Tsai, Jonathan M.
    Barkal, Amira A.
    Shen, Kimberle Y.
    Jain, Rajan
    Morganti, Rachel M.
    Shyh-Chang, Ng
    Fernhoff, Nathaniel B.
    George, Benson M.
    Wernig, Gerlinde
    Salomon, Rachel E. A.
    Chen, Zhenghao
    Vogel, Hannes
    Epstein, Jonathan A.
    Kundaje, Anshul
    Talbot, William S.
    Beachy, Philip A.
    Ang, Lay Teng
    Weissman, Irving L.
    [J]. CELL, 2016, 166 (02) : 451 - 467