Total colorings of planar graphs without intersecting 4-cycles and intersecting 5-cycles

被引:0
作者
Tan, Xiang [1 ]
Chen, Hong-Yu [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Shandong, Peoples R China
[2] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
基金
中国国家自然科学基金;
关键词
planar graph; total coloring; cycle; TOTAL CHROMATIC NUMBER; MAXIMUM DEGREE 8;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a planar graph with maximum degree Delta. It is proved that if Delta >= 6 and G does not contain intersecting 4-cycles and intersecting 5 -cycles, then the total chromatic number is Delta +1.
引用
收藏
页码:141 / 150
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1968, USPEKHIMAT NAUK
[2]  
Behzad M., 1965, THESIS
[3]  
Bondy J., 2008, GRADUATE TEXTS MATH
[4]   Colorings of plane graphs: A survey [J].
Borodin, O. V. .
DISCRETE MATHEMATICS, 2013, 313 (04) :517-539
[5]   List edge and list total colourings of multigraphs [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :184-204
[6]  
Borodin OV, 1997, J GRAPH THEOR, V26, P53, DOI 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO
[7]  
2-G
[8]   Total colourings of planar graphs with large girth [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (01) :19-24
[9]  
BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
[10]  
[蔡建生 Cai Jiansheng], 2014, [应用数学学报, Acta Mathematicae Applicatae Sinica], V37, P286