A closer look at Arctic ozone loss and polar stratospheric clouds

被引:36
作者
Harris, N. R. P. [1 ]
Lehmann, R. [2 ]
Rex, M. [2 ]
von der Gathen, P. [2 ]
机构
[1] Univ Cambridge, Dept Chem, European Ozone Res Coordinating Unit, Cambridge CB2 1HE, England
[2] Alfred Wegener Inst, Potsdam, Germany
关键词
ANTARCTIC SPRING STRATOSPHERE; ABSORPTION CROSS-SECTIONS; CHEMISTRY-CLIMATE MODELS; 3-DIMENSIONAL MODEL; CHLORINE MONOXIDE; LOW ALTITUDES; WINTER; DEPLETION; DENITRIFICATION; VORTEX;
D O I
10.5194/acp-10-8499-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The empirical relationship found between column-integrated Arctic ozone loss and the potential volume of polar stratospheric clouds inferred from meteorological analyses is recalculated in a self-consistent manner using the ERA Interim reanalyses. The relationship is found to hold at different altitudes as well as in the column. The use of a PSC formation threshold based on temperature dependent cold aerosol formation makes little difference to the original, empirical relationship. Analysis of the photochemistry leading to the ozone loss shows that activation is limited by the photolysis of nitric acid. This step produces nitrogen dioxide which is converted to chlorine nitrate which in turn reacts with hydrogen chloride on any polar stratospheric clouds to form active chlorine. The rate-limiting step is the photolysis of nitric acid: this occurs at the same rate every year and so the interannual variation in the ozone loss is caused by the extent and persistence of the polar stratospheric clouds. In early spring the ozone loss rate increases as the solar insolation increases the photolysis of the chlorine monoxide dimer in the near ultraviolet. However the length of the ozone loss period is determined by the photolysis of nitric acid which also occurs in the near ultraviolet. As a result of these compensating effects, the amount of the ozone loss is principally limited by the extent of original activation rather than its timing. In addition a number of factors, including the vertical changes in pressure and total inorganic chlorine as well as denitrification and renitrification, offset each other. As a result the extent of original activation is the most important factor influencing ozone loss. These results indicate that relatively simple parameterisations of Arctic ozone loss could be developed for use in coupled chemistry climate models.
引用
收藏
页码:8499 / 8510
页数:12
相关论文
共 57 条
[31]  
0203:OTCOSVANDGT
[32]  
2.0.CO
[33]  
2]
[34]  
NEWMAN PA, 2007, 50 WORLD MET ORG, pCH3
[35]  
NEWMAN PA, 2003, 47 WORLD MET ORG
[36]   UV Absorption Spectrum of the ClO Dimer (Cl2O2) between 200 and 420 nm [J].
Papanastasiou, Dimitrios K. ;
Papadimitriou, Vassileios C. ;
Fahey, David W. ;
Burkholder, James B. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (49) :13711-13726
[37]   Characterization of Polar Stratospheric Clouds with spaceborne lidar: CALIPSO and the 2006 Antarctic season [J].
Pitts, M. C. ;
Thomason, L. W. ;
Poole, L. R. ;
Winker, D. M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (19) :5207-5228
[38]   CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination [J].
Pitts, M. C. ;
Poole, L. R. ;
Thomason, L. W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (19) :7577-7589
[39]   Severe and extensive denitrification in the 1999-2000 Arctic winter stratosphere [J].
Popp, PJ ;
Northway, MJ ;
Holecek, JC ;
Gao, RS ;
Fahey, DW ;
Elkins, JW ;
Hurst, DF ;
Romashkin, PA ;
Toon, GC ;
Sen, B ;
Schauffler, SM ;
Salawitch, RJ ;
Webster, CR ;
Herman, RL ;
Jost, H ;
Bui, TP ;
Newman, PA ;
Lait, LR .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (15) :2875-2878
[40]   Arctic winter 2005:: Implications for stratospheric ozone loss and climate change [J].
Rex, M. ;
Salawitch, R. J. ;
Deckelmann, H. ;
von der Gathen, P. ;
Harris, N. R. P. ;
Chipperfield, M. P. ;
Naujokat, B. ;
Reimer, E. ;
Allaart, M. ;
Andersen, S. B. ;
Bevilacqua, R. ;
Braathen, G. O. ;
Claude, H. ;
Davies, J. ;
De Backer, H. ;
Dier, H. ;
Dorokhov, V. ;
Fast, H. ;
Gerding, M. ;
Godin-Beekmann, S. ;
Hoppel, K. ;
Johnson, B. ;
Kyroe, E. ;
Litynska, Z. ;
Moore, D. ;
Nakane, H. ;
Parrondo, M. C. ;
Risley, A. D., Jr. ;
Skrivankova, P. ;
Stuebi, R. ;
Viatte, P. ;
Yushkov, V. ;
Zerefos, C. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (23)