Electrolyte Design for Lithium Metal Anode-Based Batteries Toward Extreme Temperature Application

被引:182
作者
Luo, Dan [1 ,2 ,3 ]
Li, Matthew [3 ]
Zheng, Yun [3 ]
Ma, Qianyi [3 ]
Gao, Rui [3 ]
Zhang, Zhen [3 ]
Dou, Haozhen [3 ]
Wen, Guobin [1 ,2 ,3 ]
Shui, Lingling [1 ,2 ]
Yu, Aiping [3 ]
Wang, Xin [1 ,2 ]
Chen, Zhongwei [3 ]
机构
[1] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Int Acad Optoelect Zhaoqing, Guangzhou 510006, Peoples R China
[3] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
electrolyte; extreme temperature; lithium metal batteries; solid electrolyte interface; SOLID-STATE ELECTROLYTES; LI-ION; HIGH-VOLTAGE; ELECTROCHEMICAL PERFORMANCE; POLYMER ELECTROLYTE; VINYLENE CARBONATE; LIFEPO4; CATHODE; CYCLE LIFE; SALT; CELLS;
D O I
10.1002/advs.202101051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium anode-based batteries (LBs) are highly demanded in society owing to the high theoretical capacity and low reduction potential of metallic lithium. They are expected to see increasing deployment in performance critical areas including electric vehicles, grid storage, space, and sea vehicle operations. Unfortunately, competitive performance cannot be achieved when LBs operating under extreme temperature conditions where the lithium-ion chemistry fail to perform optimally. In this review, a brief overview of the challenges in developing LBs for low temperature (<0 degrees C) and high temperature (>60 degrees C) operation are provided followed by electrolyte design strategies involving Li salt modification, solvation structure optimization, additive introduction, and solid-state electrolyte utilization for LBs are introduced. Specifically, the prospects of using lithium metal batteries (LMBs), lithium sulfur (Li-S) batteries, and lithium oxygen (Li-O-2) batteries for performance under low and high temperature applications are evaluated. These three chemistries are presented as prototypical examples of how the conventional low temperature charge transfer resistances and high temperature side reactions can be overcome. This review also points out the research direction of extreme temperature electrolyte design toward practical applications.
引用
收藏
页数:20
相关论文
共 145 条
[1]   Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes [J].
Alvarado, Judith ;
Schroeder, Marshall A. ;
Pollard, Travis P. ;
Wang, Xuefeng ;
Lee, Jungwoo Z. ;
Zhang, Minghao ;
Wynn, Thomas ;
Ding, Michael ;
Borodin, Oleg ;
Meng, Ying Shirley ;
Xu, Kang .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) :780-794
[2]   A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries [J].
Arai, Juichi ;
Matsuo, Akira ;
Fujisaki, Takashi ;
Ozawa, Kazunori .
JOURNAL OF POWER SOURCES, 2009, 193 (02) :851-854
[3]   Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries [J].
Beyene, Tamene Tadesse ;
Bezabh, Hailemariam Kassa ;
Weret, Misganaw Adigo ;
Hagos, Teklay Mezgebe ;
Huang, Chen-Jui ;
Wang, Chia-Hsin ;
Su, Wei-Nien ;
Dai, Hongjie ;
Hwang, Bing-Joe .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) :A1501-A1509
[4]   An ester electrolyte for lithium-sulfur batteries capable of ultra-low temperature cycling [J].
Cai, Guorui ;
Holoubek, John ;
Xia, Dawei ;
Li, Mingqian ;
Yin, Yijie ;
Xing, Xing ;
Liu, Ping ;
Chen, Zheng .
CHEMICAL COMMUNICATIONS, 2020, 56 (64) :9114-9117
[5]   Understanding the Impact of a Nonafluorinated Ether-Based Electrolyte on Li-S Battery [J].
Cao, Jiayu ;
Tornheim, Adam ;
Glossmann, Tobias ;
Hintennach, Andreas ;
Rojas, Tomas ;
Meisner, Quinton ;
Sahore, Ritu ;
Liu, Qian ;
Wang, Yan ;
Ngo, Anh ;
Curtiss, Larry A. ;
Zhang, Zhengcheng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) :A3653-A3659
[6]   Experimental study on fire hazard of LiCoO2-based lithium-ion batteries with gel electrolyte using a cone calorimeter [J].
Cao, Junda ;
Ju, Xiaoyu ;
Peng, Yang ;
Zhou, Xiaodong ;
Hu, Yue ;
Li, Lun ;
Wang, Dong ;
Cao, Bei ;
Yang, Lizhong ;
Peng, Fei .
JOURNAL OF ENERGY STORAGE, 2020, 32
[7]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[8]   Trimethyl borate and triphenyl borate as electrolyte additives for LiFePO4 cathode with enhanced high temperature performance [J].
Chang, Chia-Chin ;
Lee, Kuan-Yi ;
Lee, Hsin-Ying ;
Su, Yu-Hsiu ;
Her, Li-Jane .
JOURNAL OF POWER SOURCES, 2012, 217 :524-529
[9]   Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive [J].
Chen, Jiawei ;
Xing, Lidan ;
Yang, Xuerui ;
Liu, Xiang ;
Li, Tiejun ;
Li, Weishan .
ELECTROCHIMICA ACTA, 2018, 290 :568-576
[10]   The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium [J].
Chen, Rusong ;
Nolan, Adelaide M. ;
Lu, Jiaze ;
Wang, Junyang ;
Yu, Xiqian ;
Mo, Yifei ;
Chen, Liquan ;
Huang, Xuejie ;
Li, Hong .
JOULE, 2020, 4 (04) :812-821