Unified Monogamy Relations of Multipartite Entanglement

被引:16
作者
Khan, Awais [1 ]
Rehman, Junaid Ur [1 ]
Wang, Kehao [2 ]
Shin, Hyundong [1 ]
机构
[1] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, South Korea
[2] Wuhan Univ Technol, Hubei Key Lab Broadband Wireless Commun & Sensor, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
D O I
10.1038/s41598-019-52817-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unified-(q, s) entanglement (mu(q,s)) is a generalized bipartite entanglement measure, which encompasses Tsallis-q entanglement, Renyi-q entanglement, and entanglement of formation as its special cases. We first provide the extended (q; s) region of the generalized analytic formula of mu(q,s). Then, the monogamy relation based on the squared mu(q,s) for arbitrary multiqubit mixed states is proved. The monogamy relation proved in this paper enables us to construct an entanglement indicator that can be utilized to identify all genuine multiqubit entangled states even the cases where three tangle of concurrence loses its efficiency. It is shown that this monogamy relation also holds true for the generalized W-class state. The ath power mu(q,s) based general monogamy and polygamy inequalities are established for tripartite qubit states.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Strong monogamy of bipartite and genuine multipartite entanglement: The Gaussian case [J].
Adesso, Gerardo ;
Illuminati, Fabrizio .
PHYSICAL REVIEW LETTERS, 2007, 99 (15)
[23]   Polynomial Monogamy Relations for Entanglement Negativity [J].
Allen, Grant W. ;
Meyer, David A. .
PHYSICAL REVIEW LETTERS, 2017, 118 (08)
[24]   Entanglement monogamy relations of qubit systems [J].
Zhu, Xue-Na ;
Fei, Shao-Ming .
PHYSICAL REVIEW A, 2014, 90 (02)
[25]   Monogamy Relations for Squared Entanglement Negativity [J].
Liu, Feng .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 66 (04) :407-410
[26]   Monogamy and Polygamy Relations of Quantum Correlations for Multipartite Systems [J].
Zhang, Mei-Ming ;
Jing, Naihuan ;
Zhao, Hui .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (01)
[27]   Monogamy and Polygamy Relations of Quantum Correlations for Multipartite Systems [J].
Mei-Ming Zhang ;
Naihuan Jing ;
Hui Zhao .
International Journal of Theoretical Physics, 2022, 61
[28]   Strong polygamy and monogamy relations for multipartite quantum systems [J].
Jin, Zhi-Xiang ;
Fei, Shao-Ming .
QUANTUM INFORMATION PROCESSING, 2020, 19 (02)
[29]   Strong polygamy and monogamy relations for multipartite quantum systems [J].
Zhi-Xiang Jin ;
Shao-Ming Fei .
Quantum Information Processing, 2020, 19
[30]   Multipartite monogamous relations for entanglement and discord [J].
Ferreira, Jonhy S. S. ;
Filenga, Davi ;
Cornelio, Marcio F. ;
Fanchini, Felipe F. .
PHYSICAL REVIEW A, 2018, 97 (01)