Building wavelets on ]0,1[ at large seales

被引:6
作者
Bertoluzza, S
Falletta, S
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
关键词
multiresolution analysis; wavelets on interval;
D O I
10.1007/s00041-003-0014-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new approach to the construction of orthonormal wavelets on the interval which allows to overcome the "non interacting boundaries" restriction of existing constructions, and therefore to construct wavelets for ]0, 1[ also at large scales in such a way that, in the range of validity of the existing constructions, the two approaches give the same result.
引用
收藏
页码:261 / 288
页数:28
相关论文
共 14 条
[1]  
ANDERSSON L, 1994, WAVELET ANAL ITS APP, V3, P1
[2]  
BERTOLUZZA S, 2001, M2AN, V35
[3]   The wavelet element method - Part II. Realization and additional features in 2D and 3D [J].
Canuto, C ;
Tabacco, A ;
Urban, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :123-165
[4]   The Wavelet Element Method part I. Construction and analysis [J].
Canuto, C ;
Tabacco, A ;
Urban, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (01) :1-52
[5]   On the effective construction of compactly supported wavelets satisfying homogeneous boundary conditions on the interval [J].
Chiavassa, G ;
Liandrat, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (01) :62-73
[6]  
Cohen A, 2000, NUMER MATH, V86, P193, DOI 10.1007/s002110000158
[7]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[8]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS .3. BETTER FREQUENCY RESOLUTION [J].
COHEN, A ;
DAUBECHIES, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (02) :520-527
[9]   Biorthogonal spline wavelets on the interval - Stability and moment conditions [J].
Dahmen, W ;
Kunoth, A ;
Urban, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1999, 6 (02) :132-196
[10]  
DAHMEN W, COMPOSITE WAVELET BA