The problem of data assimilation for soil water movement

被引:1
作者
Le Dimet, FX [1 ]
Shutyaev, VP
Wang, JF
Mu, M
机构
[1] Imag Lab Grenoble, LMC, F-38041 Grenoble, France
[2] Russian Acad Sci, Inst Numer Math, Moscow 117901, Russia
[3] Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
关键词
variational data assimilation; soil water movement; quasilinear parabolic problem; solvability; numerical analysis;
D O I
10.1051/cocv:2004009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The soil water movement model governed by the initial-boundary value problem for a quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement of the problem is formulated. The solvability of the problem is proved in a certain class of functional spaces. The data assimilation problem for this model is analysed. The numerical results are presented.
引用
收藏
页码:331 / 345
页数:15
相关论文
共 33 条
  • [1] AGOSHKOV VI, 200 USSR ACAD SCI DE
  • [2] AGOSHKOV VI, 1986, RUSS J NUMER ANAL M, V8, P1
  • [3] ALT HW, 1983, MATH Z, V183, P311
  • [4] Blayo E., 1998, EQUATIONS DERIVEES P, P205
  • [5] CHAO WC, 1992, MON WEATHER REV, V120, P1661, DOI 10.1175/1520-0493(1992)120<1661:DOAFDV>2.0.CO
  • [6] 2
  • [7] DERBER JC, 1987, MON WEATHER REV, V115, P998, DOI 10.1175/1520-0493(1987)115<0998:VFDAUQ>2.0.CO
  • [8] 2
  • [9] SOME NUMERICAL EXPERIMENTS WITH VARIABLE-STORAGE QUASI-NEWTON ALGORITHMS
    GILBERT, JC
    LEMARECHAL, C
    [J]. MATHEMATICAL PROGRAMMING, 1989, 45 (03) : 407 - 435
  • [10] Gill P. E., 1981, PRACTICAL OPTIMIZATI