Propagation front of correlations in an interacting Bose gas

被引:82
作者
Barmettler, Peter [1 ]
Poletti, Dario [1 ]
Cheneau, Marc [2 ]
Kollath, Corinna [1 ,3 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 05期
关键词
LIEB-ROBINSON BOUNDS; RENORMALIZATION-GROUP; QUANTUM;
D O I
10.1103/PhysRevA.85.053625
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the quench dynamics of a one-dimensional bosonic Mott insulator and focus on the time evolution of density correlations. For these we identify a pronounced propagation front, the velocity of which, once correctly extrapolated at large distances, can serve as a quantitative characteristic of the many-body Hamiltonian. In particular, the velocity allows the weakly interacting regime, which is qualitatively well described by free bosons, to be distinguished from the strongly interacting one, in which pairs of distinct quasiparticles dominate the dynamics. In order to describe the latter case analytically, we introduce a general approximation to solve the Bose-Hubbard Hamiltonian based on the Jordan-Wigner fermionization of auxiliary particles. This approach can also be used to determine the ground-state properties. As a complement to the fermionization approach, we derive explicitly the time-dependent many-body state in the noninteracting limit and compare our results to numerical simulations in the whole range of interactions of the Bose-Hubbard model.
引用
收藏
页数:14
相关论文
共 65 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]   Oscillating superfluidity of bosons in optical lattices [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (25) :1-250404
[3]   Dynamics of entanglement in one-dimensional spin systems [J].
Amico, L ;
Osterloh, A ;
Plastina, F ;
Fazio, R ;
Massimo Palma, G .
PHYSICAL REVIEW A, 2004, 69 (02) :24
[4]  
[Anonymous], ARXIV08042509
[5]  
Auerbach A., 2012, Interacting Electrons and Quantum Magnetism
[6]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[7]   Quantum quenches in the anisotropic spin-1/2 Heisenberg chain: different approaches to many-body dynamics far from equilibrium [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
NEW JOURNAL OF PHYSICS, 2010, 12
[8]   Quantum many-body dynamics of coupled double-well superlattices [J].
Barmettler, Peter ;
Rey, Ana Maria ;
Demler, Eugene ;
Lukin, Mikhail D. ;
Bloch, Immanuel ;
Gritsev, Vladimir .
PHYSICAL REVIEW A, 2008, 78 (01)
[9]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[10]   Generalized Jordan-Wigner transformations [J].
Batista, CD ;
Ortiz, G .
PHYSICAL REVIEW LETTERS, 2001, 86 (06) :1082-1085