Hyperuniform point sets on the sphere: probabilistic aspects

被引:13
作者
Brauchart, Johann S. [1 ]
Grabner, Peter J. [1 ]
Kusner, Woeden [2 ]
Ziefle, Jonas [3 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24, A-8010 Graz, Austria
[2] Vanderbilt Univ, Dept Math, 1326 Stevenson Ctr, Nashville, TN 37240 USA
[3] Fachbereich Math, Morgenstelle 10, D-72076 Tubingen, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 192卷 / 04期
基金
美国国家科学基金会;
关键词
Hyperuniformity; Determinantal point processes; Jittered sampling; ENERGY;
D O I
10.1007/s00605-020-01439-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of hyperuniformity has been introduced by Torquato and Stillinger in 2003 as a notion to detect structural behaviour intermediate between crystalline order and amorphous disorder. The present paper studies a generalisation of this concept to the unit sphere. It is shown that several well studied determinantal point processes are hyperuniform.
引用
收藏
页码:763 / 781
页数:19
相关论文
共 22 条
[1]   SUM OF DISTANCES BETWEEN POINTS ON A SPHERE [J].
ALEXANDER, R .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (3-4) :443-448
[2]   The spherical ensemble and uniform distribution of points on the sphere [J].
Alishahi, Kasra ;
Zamani, Mohammadsadegh .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-27
[3]  
[Anonymous], 1966, FORMULAS THEOREMS SP, DOI DOI 10.1007/978-3-662-11761-3
[4]  
[Anonymous], 1999, SPECIAL FUNCTIONS
[5]  
Axel F., 1994, QUASICRYSTALS HOUCHE
[6]   Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres [J].
Beltran, Carlos ;
Marzo, Jordi ;
Ortega-Cerda, Joaquim .
JOURNAL OF COMPLEXITY, 2016, 37 :76-109
[7]   DISTRIBUTION OF POINTS ON SPHERES AND APPROXIMATION BY ZONOTOPES [J].
BOURGAIN, J ;
LINDENSTRAUSS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 64 (01) :25-31
[8]   Spherical structure factor and classification of hyperuniformity on the sphere [J].
Bozic, Anze Losdorfer ;
Copar, Simon .
PHYSICAL REVIEW E, 2019, 99 (03)
[9]   Hyperuniform Point Sets on the Sphere: Deterministic Aspects [J].
Brauchart, Johann S. ;
Grabner, Peter J. ;
Kusner, Woeden .
CONSTRUCTIVE APPROXIMATION, 2019, 50 (01) :45-61
[10]  
DEBRUIJN NG, 1986, P K NED AKAD A MATH, V89, P123