Third Hankel determinant for certain subclass of p-valent functions

被引:13
作者
Krishna, D. Vamshee [1 ]
Venkateswarlu, B. [1 ]
RamReddy, T. [2 ]
机构
[1] GITAM Univ, GIT, Dept Math, Visakhapatnam 530045, Andhra Pradesh, India
[2] Kakatiya Univ, Dept Math, Warangal 506009, Andhra Pradesh, India
关键词
Analytic function; p-valent function; upper bound; Hankel determinant; positive real function; Toeplitz determinants;
D O I
10.1080/17476933.2015.1012162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The objective of this paper is to obtain an upper bound to the H-3(p) Hankel determinant for certain subclass of p-valent functions, using Toeplitz determinants.
引用
收藏
页码:1301 / 1307
页数:7
相关论文
共 10 条
  • [1] Ali R. M., 2003, Bull. Malays. Math. Sci. Soc, V26, P63
  • [2] Babalola KO, 2010, INEQUAL THEORY APPL, P1
  • [3] Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
  • [4] Grenander U, 1984, TOEPLITZ FORMS THEIR
  • [5] Janteng S.A., 2006, J.Inequal. Pure Appl.Math., V7, P1
  • [6] COEFFICIENT BOUNDS FOR THE INVERSE OF A FUNCTION WITH DERIVATIVE IN P
    LIBERA, RJ
    ZLOTKIEWICZ, EJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) : 251 - 257
  • [7] MacGregor T.H., 1962, Trans. Am. Math. Soc., P532, DOI [DOI 10.1090/S0002-9947-1962-0140674-7, 10.1090/S0002-9947-1962-0140674-7]
  • [8] POMMERENKE C, 1966, J LONDON MATH SOC, V41, P111
  • [9] Pommerenke C., 1975, UNIVALENT FUNCTIONS
  • [10] Simon B., 2005, CLASSICAL THEORY, V54