Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier

被引:848
作者
Yang, Heejun [1 ]
Heo, Jinseong [1 ]
Park, Seongjun [1 ]
Song, Hyun Jae [1 ]
Seo, David H. [1 ]
Byun, Kyung-Eun [1 ]
Kim, Philip [2 ]
Yoo, InKyeong [1 ]
Chung, Hyun-Jong [1 ]
Kim, Kinam [3 ]
机构
[1] Samsung Adv Inst Technol, Graphene Res Ctr, Yongin 446712, South Korea
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] Samsung Adv Inst Technol, Yongin 446712, South Korea
关键词
LARGE-AREA; FILMS; DIODES;
D O I
10.1126/science.1220527
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite several years of research into graphene electronics, sufficient on/off current ratio I-on/I-off in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.
引用
收藏
页码:1140 / 1143
页数:4
相关论文
共 29 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   THE TRANSISTOR, A SEMI-CONDUCTOR TRIODE [J].
BARDEEN, J ;
BRATTAIN, WH .
PHYSICAL REVIEW, 1948, 74 (02) :230-231
[3]   DIRECT CONTROL AND CHARACTERIZATION OF A SCHOTTKY-BARRIER BY SCANNING TUNNELING MICROSCOPY [J].
BELL, LD ;
KAISER, WJ ;
HECHT, MH ;
GRUNTHANER, FJ .
APPLIED PHYSICS LETTERS, 1988, 52 (04) :278-280
[4]   Tunable electronic interfaces between bulk semiconductors and ligand-stabilized nanoparticle assemblies [J].
Boettcher, Shannon W. ;
Strandwitz, Nicholas C. ;
Schierhorn, Martin ;
Lock, Nina ;
Lonergan, Mark C. ;
Stucky, Galen D. .
NATURE MATERIALS, 2007, 6 (08) :592-596
[5]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[6]   Graphene-Silicon Schottky Diodes [J].
Chen, Chun-Chung ;
Aykol, Mehmet ;
Chang, Chia-Chi ;
Levi, A. F. J. ;
Cronin, Stephen B. .
NANO LETTERS, 2011, 11 (05) :1863-1867
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition [J].
Heo, J. ;
Chung, H. J. ;
Lee, Sung-Hoon ;
Yang, H. ;
Seo, D. H. ;
Shin, J. K. ;
Chung, U-In ;
Seo, S. ;
Hwang, E. H. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2011, 84 (03)
[9]   DETERMINATION OF THE FERMI-LEVEL PINNING POSITION AT SI(111) SURFACES [J].
HIMPSEL, FJ ;
HOLLINGER, G ;
POLLAK, RA .
PHYSICAL REVIEW B, 1983, 28 (12) :7014-7018
[10]   Passivation of Metal Surface States: Microscopic Origin for Uniform Mono layer Graphene by Low Temperature Chemical Vapor Deposition [J].
Jeon, Insu ;
Yang, Heejun ;
Lee, Sung-Hoon ;
Heo, Jinseong ;
Seo, David H. ;
Shin, Jaikwang ;
Chung, U-In ;
Kim, Zheong Gou ;
Chung, Hyun-Jong ;
Seo, Sunae .
ACS NANO, 2011, 5 (03) :1915-1920