Investigation of Porous Silica Supported Mixed-Amine Sorbents for Post-Combustion CO2 Capture

被引:127
|
作者
Fauth, D. J. [1 ]
Gray, M. L. [1 ]
Pennline, H. W. [1 ]
Krutka, H. M. [2 ]
Sjostrom, S. [2 ]
Ault, A. M. [2 ]
机构
[1] US DOE, NETL, Pittsburgh, PA 15236 USA
[2] ADA Environm Solut, Unit B, Littleton, CO 80120 USA
关键词
MESOPOROUS MOLECULAR-SIEVE; CARBON-DIOXIDE; SOLID SORBENTS; ADSORPTION; ADSORBENTS; PERFORMANCE; CAPACITY; DESIGN;
D O I
10.1021/ef201578a
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Prospective post-combustion CO2 capture sorbents were prepared by the immobilization of a low-molecular-weight, branched polyethyleneimine (PEI) and 3-(aminopropyptriethoxysilane (APTES) within a commercially available porous PQ Corporation CS-2129 silica support to investigate (i) CO2 adsorption properties of the supported mixed-amine (PEI+APTES) sorbents in both pure CO2 environments and simulated flue gas conditions, (ii) their thermal and hydrolytic stability over numerous adsorption and desorption cycles, and (iii) their equilibrium and kinetic adsorption behavior. Initial CO2 adsorption desorption measurements via thermogravimetric analysis (TGA) were conducted in pure CO2 to measure dry, near-equilibrium CO2 adsorption capacities, together in calculating amine efficiencies, which was recognized in being a meaningful criterion in evaluating sorbent performance for selecting the "most favorable" mixed-amine (PEI+APTES) composition. The as-prepared materials containing various weight ratios of PEI to APTES showed less uptake of CO2, relative to the supported PEI-only impregnated material under investigated TGA experimental conditions. Nitrogen adsorption desorption isotherms in evaluating the physical properties of the synthesized mixed-amine (PEI+APTES) samples showed reduced values specific to surface area, and total pore volume largely predictable from the successful incorporation of PEI multilayers into the structure of the porous silica matrix, together with unreacted APTES moieties remaining behind after material synthesis. Breakthrough curves produced by (PEI-15-APTES-35)-PQCS2129, (PEI-25-APTES-25)-PQCS2129, (PEI-35-APTES-15)-PQCS2129, and (PEI-50)-PQCS2129 showed mean near-equilibrium CO2 adsorption capacities of 1.81 +/- 0.17, 2.43 +/- 0.26, 2.44 +/- 0.19, and 2.44 +/- 0.45 mol CO2/kg of sorbent, respectively, over multiple CO2 adsorption desorption cycles utilizing a 10% CO2, 8% H2O (balance, He stream) at 60 degrees C and 1.01 bar for adsorption; followed by regeneration in a He stream containing 90 vol% water vapor at 105 C. From these studies, (PEI-25-APTES-25)-PQCS2129 and (PEI-35-APTES-15)-PQCS2129 exhibited a higher CO2 capturing efficiency (absorbed amount of CO2 per gram of PEI), relative to (PEI-50)-PQCS2129, indicating the PEI/APTES interface (i.e., interaction between layers of surface alkyl chains associated with APTES and PEI) is perhaps contributing to improving the deposition/dispersion of PEI, thereby decreasing the diffusion resistance with regard to CO2 entering into the bulk of the PEI multilayers. Conversely, the lower amine efficiency of (PEI-50)-PQCS2129 can be ascribed to the possible clustering of the PEI molecules from the higher PEI loading, resulting in a decrease of accessible amine sites and creating a higher diffusional resistance in connection with CO2 molecules penetrating into the majority of layers of PEI. Near-equilibrium CO2 adsorption measurements of (PEI-25-APTES-25)-PQCS2129 in utilizing the laboratory-scale, fixed-bed flow reactor system located at ADA-ES (Littleton, CO) displayed ranges of 2.70-3.45 mol CO2/kg sorbent at 40 degrees C under different CO2 partial pressures. The (PEI-, 25-APTES-25)-PQCS2129 material showed a relatively stable performance over many adsorption desorption cycles (i.e. , >250 cycles) under humidified simulated flue gas conditions, along with a higher amine efficiency relative to the (PEI-50)-PQCS2129 sample ("PEI-only" sample). In fitting the experimental data of ADA-ES, the Langmuir isotherm model was determined to be an acceptable representation of the observed thermodynamics.
引用
收藏
页码:2483 / 2496
页数:14
相关论文
共 50 条
  • [1] Post-Combustion CO2 capture using supported amine sorbents: A process integration study
    Veneman, R.
    Kamphuis, H.
    Brilman, D. W. F.
    GHGT-11, 2013, 37 : 2100 - 2108
  • [2] Post-Combustion CO2 Capture Demonstration Using Supported Amine Sorbents: Design and Evaluation of 200 kWth Pilot
    Zhao, Wenying
    Veneman, Rens
    Chen, Denggao
    Li, Zhenshan
    Cai, Ningsheng
    Brilmana, Derk W. F.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 2374 - 2383
  • [3] Modeling post-combustion CO2 capture with amine solvents
    Leonard, Gregoire
    Heyen, Georges
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 1768 - 1772
  • [4] Deactivation causes of dry sorbents for post-combustion CO2 capture
    Cho, Min Sun
    Chae, Ho Jin
    Lee, Soo Chool
    Jo, Seong Bin
    Kim, Tae young
    Lee, Chul Ho
    Baek, Jeom-In
    Kim, Jae Chang
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2019, 57 (02): : 253 - 258
  • [5] Post-Combustion CO2 Capture Using Solid Sorbents: A Review
    Samanta, Arunkumar
    Zhao, An
    Shimizu, George K. H.
    Sarkar, Partha
    Gupta, Rajender
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (04) : 1438 - 1463
  • [6] Silica Gel Supported Solid Amine Sorbents for CO2 Capture
    Singh, Baljeet
    Gorji, Zahra Eshaghi
    Singh, Rustam
    Sharma, Vikas
    Repo, Timo
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (01)
  • [7] Amine-grafted mesoporous copper silicates as recyclable solid amine sorbents for post-combustion CO2 capture
    Ren, Yanping
    Ding, Ruiyu
    Yue, Hairong
    Tang, Siyang
    Liu, Changjun
    Zhao, Jinbo
    Lin, Wen
    Liang, Bin
    APPLIED ENERGY, 2017, 198 : 250 - 260
  • [8] Spectroscopic Investigation into Oxidative Degradation of Silica-Supported Amine Sorbents for CO2 Capture
    Srikanth, Chakravartula S.
    Chuang, Steven S. C.
    CHEMSUSCHEM, 2012, 5 (08) : 1435 - 1442
  • [9] Advancement in porous adsorbents for post-combustion CO2 capture
    Modak, Arindam
    Jana, Subhra
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 276 : 107 - 132
  • [10] Epoxide functionalization of a pentaethylenehexamine adsorbent supported on macroporous silica for post-combustion CO2 capture
    Cho, A. Ra
    Kim, Hana
    Won, Yooseob
    Lee, Yu-Ri
    Kim, Jae-Young
    Nam, Hyungseok
    Jo, Sung-Ho
    Park, Young Cheol
    Lee, Dong-Ho
    FUEL, 2022, 325