Semitransparent one-dimensional potential: a Green's function approach

被引:3
作者
Maldonado-Villamizar, F. H. [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico
关键词
point potentials; unstable systems; Green's functions; OPERATORS; STATES;
D O I
10.1088/0031-8949/90/6/065202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the unstable harmonic oscillator and the unstable linear potential in the presence of the point potential, which is the superposition of the Dirac delta(x) and its derivative delta'(x). Using the physical boundary conditions for the Green's function we derive for both systems the resonance poles and the resonance wave functions. The matching conditions for the resonance wave functions coincide with those obtained by the self-adjoint extensions of the point potentials and also by the modelling of the delta'(x) function. We find that, with our definitions, the pure b delta'(x) barrier is semi-transparent independent of the value of b.
引用
收藏
页数:10
相关论文
共 25 条
[11]   Unstable quantum oscillator [J].
Espinosa, Maria G. ;
Kielanowski, Piotr .
5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
[12]   Self-adjoint Hamiltonians with a mass jump: General matching conditions [J].
Gadella, M. ;
Kuru, S. ;
Negro, J. .
PHYSICS LETTERS A, 2007, 362 (04) :265-268
[13]   One Dimensional Models with a Singular Potential of the Type -αδ(x) plus βδ'(x) [J].
Gadella, M. ;
Glasser, M. L. ;
Nieto, L. M. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) :2144-2152
[14]   Bound states and scattering coefficients of the -aδ(x) plus bδ′(x) potential [J].
Gadella, M. ;
Negro, J. ;
Nieto, L. M. .
PHYSICS LETTERS A, 2009, 373 (15) :1310-1313
[15]  
Golovaty Y, 2012, METHODS FUNCT ANAL T, V18, P243
[16]   Distribution theory for discontinuous test functions and differential operators with generalized coefficients [J].
Kurasov, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 201 (01) :297-323
[17]  
Landau L. D., 1958, COURSE THEORETICAL P, V3, DOI DOI 10.1016/C2013-0-02793-4
[18]   A SIMPLE-MODEL OF A DECAYING QUANTUM-MECHANICAL STATE [J].
LUDVIKSSON, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (14) :4733-4738
[19]  
Morse P. M., 1953, Methods of Theoretical Physics
[20]  
Newton R. G., 1982, Scattering Theory of Waves and Particles, V2nd