Semitransparent one-dimensional potential: a Green's function approach

被引:3
作者
Maldonado-Villamizar, F. H. [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico
关键词
point potentials; unstable systems; Green's functions; OPERATORS; STATES;
D O I
10.1088/0031-8949/90/6/065202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the unstable harmonic oscillator and the unstable linear potential in the presence of the point potential, which is the superposition of the Dirac delta(x) and its derivative delta'(x). Using the physical boundary conditions for the Green's function we derive for both systems the resonance poles and the resonance wave functions. The matching conditions for the resonance wave functions coincide with those obtained by the self-adjoint extensions of the point potentials and also by the modelling of the delta'(x) function. We find that, with our definitions, the pure b delta'(x) barrier is semi-transparent independent of the value of b.
引用
收藏
页数:10
相关论文
共 25 条
[1]  
Abramowitz M., 1969, Handbook of mathematical functions: with formulas, graphs and mathematical tables
[2]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics
[3]   A remarkable spectral feature of the Schrodinger Hamiltonian of the harmonic oscillator perturbed by an attractive δ′-interaction centred at the origin: double degeneracy and level crossing [J].
Albeverio, Sergio ;
Fassari, Silvestro ;
Rinaldi, Fabio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (38)
[4]   Unstable quantum oscillator with point interactions: Maverick resonances, antibound states and other surprises [J].
Alvarez, J. J. ;
Gadella, M. ;
Lara, L. P. ;
Maldonado-Villamizar, F. H. .
PHYSICS LETTERS A, 2013, 377 (38) :2510-2519
[5]  
[Anonymous], SPRINGER SERIES SOLI
[6]  
[Anonymous], ARXIV14116703V1MATHP
[7]  
[Anonymous], REP MATH PHYS
[8]  
Berezin F.A., 1961, SOV MATH DOKL, V2, P372
[9]  
Bethe H., 1935, Proc. R. Soc. London, Ser. A, V148, P146, DOI 10.1098/rspa.1935.0010
[10]   Distributional approach to point interactions in one-dimensional quantum mechanics [J].
Calcada, Marcos ;
Lunardi, Jose T. ;
Manzoni, Luiz A. ;
Monteiro, Wagner .
FRONTIERS IN PHYSICS, 2014, 2 :1-10