Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

被引:31
作者
Forestieri, Sara D. [1 ]
Cornwell, Gavin C. [2 ]
Helgestad, Taylor M. [1 ]
Moore, Kathryn A. [2 ]
Lee, Christopher [2 ]
Novak, Gordon A. [3 ]
Sultana, Camille M. [2 ]
Wang, Xiaofei [2 ]
Bertram, Timothy H. [2 ,3 ]
Prather, Kimberly A. [2 ,4 ]
Cappa, Christopher D. [1 ]
机构
[1] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA
[4] Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA
关键词
ORGANIC-MATTER ENRICHMENT; MARINE AEROSOL; SIZE MATTERS; MIXING STATE; GROWTH; SUBMICRON; MODEL; OCEAN; SATELLITE; CHEMISTRY;
D O I
10.5194/acp-16-9003-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA) particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85% relative humidity (GF(85 %)) of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs). One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 %) values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 %) measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer) and single particle (using an aerosol time-of-flight mass spectrometer) measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 %) values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 %) depression and the peak chlorophyll a (Chl a) concentrations by either 1 (indoor MART) or 3-to-6 (outdoor MART) days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 %) values (relative to pure sea salt) is consistent with the large observed volume fractions of nonrefractory organic matter (NR-OM) comprising the SSA. The GF(85 %) values exhibited a reasonable negative correlation with the SSA NR-OM volume fractions after the peak of the blooms (i.e., Chl a maxima); i.e., the GF(85 %) values generally decreased when the NR-OM volume fractions increased. The GF(85 %) vs. NR-OM volume fraction relationship was interpreted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and used to estimate the GF(85 %) of the organic matter in the nascent SSA. The estimated pure NROM GF(85 %) values were 1.16 +/- 0.09 and 1.23 +/- 0.10 for the indoor and outdoor MARTS, respectively. These measurements demonstrate a clear relationship between SSA particle composition and the sensitivity of light scattering to variations in relative humidity. The implications of these observations to the direct climate effects of SSA particles are discussed.
引用
收藏
页码:9003 / 9018
页数:16
相关论文
共 72 条
[1]  
[Anonymous], 2014, CLIMATE CHANGE 2014, V80, P1
[2]  
[Anonymous], 2004, Sea salt aerosol production: mechanisms, methods, measurements and models: a critical review
[3]   Inside versus Outside: Ion Redistribution in Nitric Acid Reacted Sea Spray Aerosol Particles as Determined by Single Particle Analysis [J].
Ault, Andrew P. ;
Guasco, Timothy L. ;
Ryder, Olivia S. ;
Baltrusaitis, Jonas ;
Cuadra-Rodriguez, Luis A. ;
Collins, Douglas B. ;
Ruppel, Matthew J. ;
Bertram, Timothy H. ;
Prather, Kimberly A. ;
Grassian, Vicki H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (39) :14528-14531
[4]  
Baron P.A., 2011, Aerosol measurement: principles, techniques, and applications
[5]   Measurements of ocean derived aerosol off the coast of California [J].
Bates, T. S. ;
Quinn, P. K. ;
Frossard, A. A. ;
Russell, L. M. ;
Hakala, J. ;
Petaja, T. ;
Kulmala, M. ;
Covert, D. S. ;
Cappa, C. D. ;
Li, S. -M. ;
Hayden, K. L. ;
Nuaaman, I. ;
McLaren, R. ;
Massoli, P. ;
Canagaratna, M. R. ;
Onasch, T. B. ;
Sueper, D. ;
Worsnop, D. R. ;
Keene, W. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[6]   Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles [J].
Biskos, G ;
Malinowski, A ;
Russell, LM ;
Buseck, PR ;
Martin, ST .
AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (02) :97-106
[7]   Parameterization of a spectral solar irradiance model for the global ocean using multiple satellite sensors [J].
Bouvet, M ;
Hoepffner, N ;
Dowell, MD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2002, 107 (C12)
[8]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[9]   Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon [J].
Cappa, Christopher D. ;
Onasch, Timothy B. ;
Massoli, Paola ;
Worsnop, Douglas R. ;
Bates, Timothy S. ;
Cross, Eben S. ;
Davidovits, Paul ;
Hakala, Jani ;
Hayden, Katherine L. ;
Jobson, B. Tom ;
Kolesar, Katheryn R. ;
Lack, Daniel A. ;
Lerner, Brian M. ;
Li, Shao-Meng ;
Mellon, Daniel ;
Nuaaman, Ibraheem ;
Olfert, Jason S. ;
Petaja, Tuukka ;
Quinn, Patricia K. ;
Song, Chen ;
Subramanian, R. ;
Williams, Eric J. ;
Zaveri, Rahul A. .
SCIENCE, 2012, 337 (6098) :1078-1081
[10]   Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation [J].
Cappa, Christopher D. ;
Che, Daphne L. ;
Kessler, Sean H. ;
Kroll, Jesse H. ;
Wilson, Kevin R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116