Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice

被引:128
|
作者
Zou, Jie [1 ,2 ]
Liu, Cuifang [1 ,2 ]
Liu, Ailing [2 ]
Zou, Dian [2 ]
Chen, Xinbo [1 ,2 ]
机构
[1] Hunan Agr Univ, Hunan Prov Key Lab Germplasm Innovat & Utilizat C, Changsha 410128, Hunan, Peoples R China
[2] Hunan Agr Univ, Coll Biosci & Biotechnol, Changsha 410128, Hunan, Peoples R China
关键词
Drought tolerance; Oryza sativa L; Salt resistance; Small heat shock protein; Transgenic plant; HEAT-SHOCK-PROTEIN; CELL-MEMBRANE STABILITY; STRESS TOLERANCE; WATER-STRESS; EXTREME TEMPERATURES; ABIOTIC STRESSES; ABSCISIC-ACID; PLANTS; ARABIDOPSIS; EXPRESSION;
D O I
10.1016/j.jplph.2011.12.014
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Heat shock proteins (Hsps) play an important role in plant stress tolerance. We previously reported that expression of OsHsp17.0 and OsHsp23.7 could be enhanced by heat shock treatment and/or other abiotic stresses. In this paper, stress tolerance assays of transgenic rice plants overexpressing OsHsp17.0 and OsHsp23.7 have been carried out. Both OsHsp17.0-OE and OsHsp23.7-OE transgenic lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to mannitol and NaCl. Phenotypic analysis showed that transgenic rice lines displayed a higher tolerance to drought and salt stress compared to WT plants. In addition, transgenic rice lines showed significantly lower REC. lower MDA content and higher free proline content than WT under drought and salt stresses. These results suggest that OsHsp17.0 and OsHsp23.7 play an important role in rice acclimation to salt and drought stresses and are useful for engineering drought and salt tolerance rice. (C) 2012 Elsevier GmbH. All rights reserved.
引用
收藏
页码:628 / 635
页数:8
相关论文
共 50 条
  • [21] Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza
    Yucui Wu
    Congling Liu
    Jing Kuang
    Qian Ge
    Yuan Zhang
    Zhezhi Wang
    Protoplasma, 2014, 251 : 1191 - 1199
  • [22] Overexpression of OsUGT3 enhances drought and salt tolerance through modulating ABA synthesis and scavenging ROS in rice
    Wang, Ting
    Ma, Yu-qing
    Huang, Xiu-xiu
    Mu, Tian-jiao
    Li, Yan-jie
    Li, Xing-kun
    Liu, Xi
    Hou, Bing-kai
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 192
  • [23] Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice
    Dou, Mingzhu
    Fan, Sanhong
    Yang, Suxin
    Huang, Rongfeng
    Yu, Huiyun
    Feng, Xianzhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (01)
  • [24] Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants
    Yoon, Suin
    Lee, Dong-Keun
    Yu, In Jeong
    Kim, Youn Shic
    Choi, Yang Do
    Kim, Ju-Kon
    PLANT BIOTECHNOLOGY REPORTS, 2017, 11 (01) : 53 - 62
  • [25] Overexpression of the OsbZIP66 transcription factor enhances drought tolerance of rice plants
    Suin Yoon
    Dong-Keun Lee
    In Jeong Yu
    Youn Shic Kim
    Yang Do Choi
    Ju-Kon Kim
    Plant Biotechnology Reports, 2017, 11 : 53 - 62
  • [26] Overexpression of a Vesicle Trafficking Gene, OsRab7, Enhances Salt Tolerance in Rice
    Peng, Xiaojue
    Ding, Xia
    Chang, Tianfang
    Wang, Zhoulong
    Liu, Rong
    Zeng, Xin
    Cai, Yaohui
    Zhu, Youlin
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [27] Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance
    Wu, LQ
    Fan, ZM
    Guo, L
    Li, YQ
    Chen, ZL
    Qu, LJ
    PLANT SCIENCE, 2005, 168 (02) : 297 - 302
  • [28] Overexpression of a Rice MicroRNA319 Gene Enhances Drought and Salt Tolerance in Transgenic Creeping Bentgrass (Agrostis stolonifera L.)
    Zhou, Man
    Li, Dayong
    Li, Zhigang
    Hu, Qian
    Luo, Hong
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2011, 47 : S37 - S37
  • [29] Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance
    Zhang, Lei
    Xiao, Shanshan
    Li, Wenqi
    Feng, Wei
    Li, Juan
    Wu, Zhidan
    Gao, Xuewen
    Liu, Fengquan
    Shao, Min
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (12) : 4229 - 4238
  • [30] Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance
    An, Xia
    Liao, Yiwen
    Zhang, Jingyu
    Dai, Lunjin
    Zhang, Na
    Wang, Bo
    Liu, Lijun
    Peng, Dingxiang
    PLANT GROWTH REGULATION, 2015, 76 (02) : 211 - 223