Temperature-Induced Topological Phase Transition in HgTe Quantum Wells

被引:49
作者
Kadykov, A. M. [1 ,2 ]
Krishtopenko, S. S. [1 ,2 ]
Jouault, B. [1 ]
Desrat, W. [1 ]
Knap, W. [1 ]
Ruffenach, S. [1 ]
Consejo, C. [1 ]
Torres, J. [3 ]
Morozov, S. V. [2 ]
Mikhailov, N. N. [4 ,5 ]
Dvoretskii, S. A. [4 ,5 ]
Teppe, F. [1 ]
机构
[1] Univ Montpellier, CNRS, UMR 5221, Lab Charles Coulomb, F-34095 Montpellier, France
[2] RAS, Inst Phys Microstruct, GSP-105, Nizhnii Novgorod 603950, Russia
[3] Univ Montpellier, CNRS, UMR 5214, Inst Elect & Syst, F-34095 Montpellier, France
[4] Russian Acad Sci, Inst Semicond Phys, Siberian Branch, Prospekt Akad Lavrenteva 13, Novosibirsk 630090, Russia
[5] Novosibirsk State Univ, Pirogova St 2, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
CYCLOTRON-RESONANCE; STATE;
D O I
10.1103/PhysRevLett.120.086401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a direct observation of temperature-induced topological phase transition between the trivial and topological insulator states in an HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures, and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electronlike and holelike subbands. Their crossing at a critical magnetic field B-c is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of Bc, we directly extract the critical temperature T-c at which the bulk band gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.
引用
收藏
页数:5
相关论文
共 32 条
[1]   Quantum magnetoresistance [J].
Abrikosov, AA .
PHYSICAL REVIEW B, 1998, 58 (05) :2788-2794
[2]   Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene [J].
Bennaceur, K. ;
Jacques, P. ;
Portier, F. ;
Roche, P. ;
Glattli, D. C. .
PHYSICAL REVIEW B, 2012, 86 (08)
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]  
Brüne C, 2012, NAT PHYS, V8, P485, DOI [10.1038/nphys2322, 10.1038/NPHYS2322]
[5]   Single valley Dirac fermions in zero-gap HgTe quantum wells [J].
Buettner, B. ;
Liu, C. X. ;
Tkachov, G. ;
Novik, E. G. ;
Bruene, C. ;
Buhmann, H. ;
Hankiewicz, E. M. ;
Recher, P. ;
Trauzettel, B. ;
Zhang, S. C. ;
Molenkamp, L. W. .
NATURE PHYSICS, 2011, 7 (05) :418-422
[6]   Magnetoplasmons and cyclotron resonance in a two-dimensional electron gas [J].
Bychkov, YA ;
Martinez, G .
PHYSICAL REVIEW B, 2005, 72 (19)
[7]   Effect of magnetic field on electron transport in HgTe/CdTe quantum wells: Numerical analysis [J].
Chen, Jiang-chai ;
Wang, Jian ;
Sun, Qing-feng .
PHYSICAL REVIEW B, 2012, 85 (12)
[8]   Photogalvanic probing of helical edge channels in two-dimensional HgTe topological insulators [J].
Dantscher, K. -M. ;
Kozlov, D. A. ;
Scherr, M. T. ;
Gebert, S. ;
Baerenfaenger, J. ;
Durnev, M. V. ;
Tarasenko, S. A. ;
Bel'kov, V. V. ;
Mikhailov, N. N. ;
Dvoretsky, S. A. ;
Kvon, Z. D. ;
Ziegler, J. ;
Weiss, D. ;
Ganichev, S. D. .
PHYSICAL REVIEW B, 2017, 95 (20)
[9]   Magnetic field effects on edge and bulk states in topological insulators based on HgTe/CdHgTe quantum wells with strong natural interface inversion asymmetry [J].
Durnev, M. V. ;
Tarasenko, S. A. .
PHYSICAL REVIEW B, 2016, 93 (07)
[10]   Growth of HgTe Quantum Wells for IR to THz Detectors [J].
Dvoretsky, S. ;
Mikhailov, N. ;
Sidorov, Yu. ;
Shvets, V. ;
Danilov, S. ;
Wittman, B. ;
Ganichev, S. .
JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (07) :918-923