Computer-aided pattern classification system for dermoscopy images

被引:27
作者
Abbas, Qaisar [1 ]
Celebi, M. Emre [2 ]
Fondon, Irene [3 ]
机构
[1] Natl Text Univ, Dept Comp Sci, Faisalabad 37610, Pakistan
[2] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[3] Sch Engn Path Discovery, Dept Signal Theory & Commun, Seville, Spain
关键词
melanoma; computer-aided diagnosis; dermoscopy; pattern recognition; texture analysis; TEXTURE CLASSIFICATION; DIGITAL DERMOSCOPY; SKIN-LESIONS; COLOR; ALGORITHM;
D O I
10.1111/j.1600-0846.2011.00562.x
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background Computer-aided pattern classification of melanoma and other pigmented skin lesions is one of the most important tasks for clinical diagnosis. To differentiate between benign and malignant lesions, the extraction of color, architectural order, symmetry of pattern and homogeneity (CASH) is a challenging task. Methods In this article, a novel pattern classification system (PCS) based on the clinical CASH rule is presented to classify among six classes of patterns. The PCS system consists of the following five steps: transformation to the CIE L*a*b* color space, pre-processing to enhance the tumor region and removal of hairs, tumor-area segmentation, color and texture feature extraction, and finally, classification based on a multiclass support vector machine. Results The PCS system is tested on a total of 180 dermoscopic images. To test the performance of the PCS diagnostic classifier, the area under the receiver operating characteristics curve (AUC) is utilized. The proposed classifier achieved a sensitivity of 91.64%, specificity of 94.14%, and AUC of 0.948. Conclusion The experimental results demonstrate that the proposed pattern classifier is highly accurate and classify between benign and malignant lesions into some extend. The PCS method is fully automatic and can accurately detect different patterns from dermoscopy images using color and texture properties. Additional pattern features can be included to investigate the impact of pattern classification based on the CASH rule.
引用
收藏
页码:278 / 289
页数:12
相关论文
共 30 条
[1]  
Abbas Q, 2011, BIOMEDICAL IN PRESS
[2]  
Abbas Q, 2011, SKIN RES TE IN PRESS
[3]   Lesion border detection in dermoscopy images using dynamic programming [J].
Abbas, Qaisar ;
Emre Celebi, M. ;
Fondon Garcia, Irene ;
Rashid, Muhammad .
SKIN RESEARCH AND TECHNOLOGY, 2011, 17 (01) :91-100
[4]  
ARGENIANO G, 2002, INTERACTIVE ATLAS DE
[5]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[6]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[7]   A methodological approach to the classification of dermoscopy images [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Uddin, Bakhtiyar ;
Lyatornid, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2007, 31 (06) :362-373
[8]   Adaptive perceptual color-texture image segmentation [J].
Chen, JQ ;
Pappas, TN ;
Mojsilovic, A ;
Rogowitz, BE .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (10) :1524-1536
[9]   Multiple skin cancer risk behaviors in the US population [J].
Coups, Elliot J. ;
Manne, Sharon L. ;
Heckman, Carolyn J. .
AMERICAN JOURNAL OF PREVENTIVE MEDICINE, 2008, 34 (02) :87-93
[10]  
Green P, 2003, COLOR ENG ACHIEVING