A local discontinuous Galerkin method for the second-order wave equation

被引:57
作者
Baccouch, Mahboub [1 ]
机构
[1] Univ Nebraska, Dept Math, Omaha, NE 68182 USA
关键词
Local discontinuous Galerkin method; Second-order wave equation; Superconvergence; A posteriori error estimation; FINITE-ELEMENT METHODS; 2-DIMENSIONAL HYPERBOLIC PROBLEMS; POSTERIORI ERROR ESTIMATION; CONSERVATION-LAWS; SUPERCONVERGENCE;
D O I
10.1016/j.cma.2011.10.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present new superconvergence results for the local discontinuous Galerkin (LDG) method applied to the second-order scalar wave equation in one space dimension. Numerical experiments show O(h(p+1))L-2 convergence rate for the LDG solution and O(h(p+2)) superconvergent solutions at Radau points. More precisely, a local error analysis reveals that, at a fixed time t, the leading terms of the discretization errors for the solution and its derivative using p-degree polynomial approximations are proportional to the (p + 1)-degree right Radau and (p + 1)-degree left Radau polynomials, respectively. Thus, the p-degree LDG solution is O(h(p+2)) superconvergent at the roots of the (p + 1)-degree right Radau polynomial and the derivative of the LDG solution is O(h(p+2)) superconvergent at the roots of the (p + 1)-degree left Radau polynomial. These results are used to construct simple, efficient, and asymptotically correct a posteriori error estimates in regions where solutions are smooth. Finally, we present several numerical examples to validate the superconvergence results and the asymptotic exactness of our a posteriori errors estimates under mesh refinement. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:129 / 143
页数:15
相关论文
共 26 条
[1]   Superconvergence of discontinuous finite element solutions for transient convection-diffusion problems [J].
Adjerid, S ;
Klauser, A .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :5-24
[2]   A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems [J].
Adjerid, S ;
Devine, KD ;
Flaherty, JE ;
Krivodonova, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) :1097-1112
[3]  
Adjerid S., 2005, P 3 MIT C COMP FLUID
[4]   The discontinuous galerkin method for two-dimensional hyperbolic problems. Part I: Superconvergence error analysis [J].
Adjerid, Slimane ;
Baccouch, Mahboub .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (01) :75-113
[5]   Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem [J].
Adjerid, Slimane ;
Baccouch, Mahboub .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (09) :903-914
[6]   The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation [J].
Adjerid, Slimane ;
Baccouch, Mahboub .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (01) :15-49
[7]  
[Anonymous], 2000, LECT NOTES COMPUTATI
[8]  
[Anonymous], 1974, PUBLICATIONS MATH IN
[9]   Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes [J].
Baccouch, Mahboub ;
Adjerid, Slimane .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) :162-177