Automated Segmentation of Cortical Grey Matter from T1-Weighted MRI Images

被引:0
|
作者
Johnson, Eileanoir B. [1 ]
Scahill, Rachael I. [1 ]
Tabrizi, Sarah J. [1 ]
机构
[1] UCL Inst Neurol, Huntingtons Dis Res Ctr, London, England
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2019年 / 143期
关键词
Neuroscience; Issue; 143; MRI; structural; SPM; FSL; FreeSurfer; ANTs; MALP-EM; quality control; grey matter; SURFACE-BASED ANALYSIS; THICKNESS;
D O I
10.3791/58198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Within neuroimaging research, a number of recent studies have discussed the impact of between-study differences in volumetric findings that are thought to result from the use of different segmentation tools to generate brain volumes. Here, processing pipelines for seven automated tools that can be used to segment grey matter within the brain are presented. The protocol provides an initial step for researchers aiming to find the most accurate method for generating grey matter volumes from T1-weighted MRI scans. Steps to undertake detailed visual quality control are also included in the manuscript. This protocol covers a range of potential segmentation tools and encourages users to compare the performance of these tools within a subset of their data before selecting one to apply to a full cohort. Furthermore, the protocol may be further generalized to the segmentation of other brain regions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep Learning Framework for Liver Segmentation from T1-Weighted MRI Images
    Hossain, Md. Sakib Abrar
    Gul, Sidra
    Chowdhury, Muhammad E. H.
    Khan, Muhammad Salman
    Sumon, Md. Shaheenur Islam
    Bhuiyan, Enamul Haque
    Khandakar, Amith
    Hossain, Maqsud
    Sadique, Abdus
    Al-Hashimi, Israa
    Ayari, Mohamed Arselene
    Mahmud, Sakib
    Alqahtani, Abdulrahman
    Kang, Dae-Ki
    SENSORS, 2023, 23 (21)
  • [2] A comparison of automated lesion segmentation approaches for chronic stroke T1-weighted MRI data
    Ito, Kaori L.
    Kim, Hosung
    Liew, Sook-Lei
    HUMAN BRAIN MAPPING, 2019, 40 (16) : 4669 - 4685
  • [3] A benchmark for hypothalamus segmentation on T1-weighted MR images
    Rodrigues, Livia
    Ribeiro Rezende, Thiago Junqueira
    Wertheimer, Guilherme
    Santos, Yves
    Franca, Marcondes
    Rittner, Leticia
    NEUROIMAGE, 2022, 264
  • [4] Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg: Application to multiple sclerosis
    Yiannakas, Marios C.
    Mustafa, Ahmed M.
    De Leener, Benjamin
    Kearney, Hugh
    Tur, Carmen
    Altmann, Daniel R.
    De Angelis, Floriana
    Plantone, Domenico
    Ciccarelli, Olga
    Miller, David H.
    Cohen-Adad, Julien
    Wheeler-Kingshott, Claudia A. M. Gandini
    NEUROIMAGE-CLINICAL, 2016, 10 : 71 - 77
  • [5] Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images
    Martin A. Belzunce
    Johann Henckel
    Anastasia Fotiadou
    Anna Di Laura
    Alister Hart
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2020, 33 : 677 - 688
  • [6] Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images
    Belzunce, Martin A.
    Henckel, Johann
    Fotiadou, Anastasia
    Di Laura, Anna
    Hart, Alister
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2020, 33 (05) : 677 - 688
  • [7] AUTOMATED DETECTION OF FOCAL CORTICAL DYSPLASIA LESIONS ON T1-WEIGHTED MRI USING VOLUME-BASED DISTRIBUTIONAL FEATURES
    Yang, Chin-Ann
    Kaveh, Mostafa
    Erickson, Bradley J.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 865 - 870
  • [8] Spacial Aliasing Artefact Detection on T1-Weighted MRI Images
    Teixeira, Joao F.
    Oliveira, Helder P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 462 - 470
  • [9] A semi-automated "blanket" method for renal segmentation from non-contrast T1-weighted MR images
    Rusinek, Henry
    Lim, Jeremy C.
    Wake, Nicole
    Seah, Jas-mine
    Botterill, Elissa
    Farquharson, Shawna
    Mikheev, Artem
    Lim, Ruth P.
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2016, 29 (02) : 197 - 206
  • [10] A semi-automated “blanket” method for renal segmentation from non-contrast T1-weighted MR images
    Henry Rusinek
    Jeremy C. Lim
    Nicole Wake
    Jas-mine Seah
    Elissa Botterill
    Shawna Farquharson
    Artem Mikheev
    Ruth P. Lim
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2016, 29 : 197 - 206