Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes

被引:74
作者
Ishihara, S
Fujimoto, K
Shibata, T
机构
[1] Hiroshima Univ, Dept Math & Life Sci, Higashihiroshima 7398526, Japan
[2] Univ Tokyo, Dept Pure & Appl Sci, Meguro Ku, Tokyo 1538902, Japan
关键词
D O I
10.1111/j.1365-2443.2005.00897.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Gene regulatory networks contain several substructures called network motifs, which frequently exist throughout the networks. One of such motifs found in Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster is the feed-forward loop, in which an effector regulates its target by a direct regulatory interaction and an indirect interaction mediated by another gene product. Here, we theoretically analyze the behavior of networks that contain feed-forward loops cross talking to each other. In response to levels of the effecter, such networks can generate multiple rise-and-fall temporal expression profiles and spatial stripes, which are typically observed in developmental processes. The mechanism to generate these responses reveals the way of inferring the regulatory pathways from experimental results. Our database study of gene regulatory networks indicates that most feed-forward loops actually cross talk. We discuss how the feed-forward loops and their cross talks can play important roles in morphogenesis.
引用
收藏
页码:1025 / 1038
页数:14
相关论文
共 42 条
[1]   Spatiotemporal control of gene expression with pulse-generating networks [J].
Basu, S ;
Mehreja, R ;
Thiberge, S ;
Chen, MT ;
Weiss, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6355-6360
[2]   On schemes of combinatorial transcription logic [J].
Buchler, NE ;
Gerland, U ;
Hwa, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5136-5141
[3]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79
[4]   Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network -: art. no. 10 [J].
Dobrin, R ;
Beg, QK ;
Barabási, AL ;
Oltvai, ZN .
BMC BIOINFORMATICS, 2004, 5 (1)
[5]   THE BICOID PROTEIN IS A POSITIVE REGULATOR OF HUNCHBACK TRANSCRIPTION IN THE EARLY DROSOPHILA EMBRYO [J].
DRIEVER, W ;
NUSSLEINVOLHARD, C .
NATURE, 1989, 337 (6203) :138-143
[6]   The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis [J].
Eichenberger, P ;
Fujita, M ;
Jensen, ST ;
Conlon, EM ;
Rudner, DZ ;
Wang, ST ;
Ferguson, C ;
Haga, K ;
Sato, T ;
Liu, JS ;
Losick, R .
PLOS BIOLOGY, 2004, 2 (10) :1664-1683
[7]  
ELDON ED, 1991, DEVELOPMENT, V111, P367
[8]   Construction of a genetic toggle switch in Escherichia coli [J].
Gardner, TS ;
Cantor, CR ;
Collins, JJ .
NATURE, 2000, 403 (6767) :339-342
[9]  
GREEN JBA, 1994, DEVELOPMENT, V120, P2271
[10]   RESPONSES OF EMBRYONIC XENOPUS CELLS TO ACTIVIN AND FGF ARE SEPARATED BY MULTIPLE DOSE THRESHOLDS AND CORRESPOND TO DISTINCT AXES OF THE MESODERM [J].
GREEN, JBA ;
NEW, HV ;
SMITH, JC .
CELL, 1992, 71 (05) :731-739