An active-set trust-region method for derivative-free nonlinear bound-constrained optimization

被引:35
|
作者
Gratton, Serge [2 ]
Toint, Philippe L. [1 ]
Troeltzsch, Anke [3 ]
机构
[1] FUNDP Univ Namur, Namur Res Ctr Complex Syst NAXYS, B-5000 Namur, Belgium
[2] ENSEEIHT, F-31000 Toulouse, France
[3] CERFACS, F-31057 Toulouse, France
来源
OPTIMIZATION METHODS & SOFTWARE | 2011年 / 26卷 / 4-5期
关键词
derivative-free optimization; bound constraints; nonlinear optimization; active-set methods; trust region; numerical experiments; PERFORMANCE PROFILES; ALGORITHMS; GEOMETRY; SEARCH;
D O I
10.1080/10556788.2010.549231
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider an implementation of a recursive model-based active-set trust-region method for solving bound-constrained nonlinear non-convex optimization problems without derivatives using the technique of self-correcting geometry proposed in K. Scheinberg and Ph.L. Toint [Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization. SIAM Journal on Optimization, (to appear), 2010]. Considering an active-set method in bound-constrained model-based optimization creates the opportunity of saving a substantial amount of function evaluations. It allows US to maintain much smaller interpolation sets while proceeding optimization in lower-dimensional subspaces. The resulting algorithm is shown to be numerically competitive.
引用
收藏
页码:873 / 894
页数:22
相关论文
共 50 条
  • [31] A derivative-free trust-region algorithm for reliability-based optimization
    Tian Gao
    Jinglai Li
    Structural and Multidisciplinary Optimization, 2017, 55 : 1535 - 1539
  • [32] A trust-region framework for derivative-free mixed-integer optimization
    Torres, Juan J.
    Nannicini, Giacomo
    Traversi, Emiliano
    Wolfler Calvo, Roberto
    MATHEMATICAL PROGRAMMING COMPUTATION, 2024, 16 (03) : 369 - 422
  • [33] A globally convergent trust-region algorithm for unconstrained derivative-free optimization
    Priscila S. Ferreira
    Elizabeth W. Karas
    Mael Sachine
    Computational and Applied Mathematics, 2015, 34 : 1075 - 1103
  • [34] A globally convergent trust-region algorithm for unconstrained derivative-free optimization
    Ferreira, Priscila S.
    Karas, Elizabeth W.
    Sachine, Mael
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (03): : 1075 - 1103
  • [35] Active-set projected trust-region algorithm for box-constrained nonsmooth equations
    Qi, L
    Tong, XJ
    Li, DH
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (03) : 601 - 625
  • [36] A derivative-free trust-region algorithm for reliability-based optimization
    Gao, Tian
    Li, Jinglai
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (04) : 1535 - 1539
  • [37] An Active-Set Fischer-Burmeister Trust-Region Algorithm to Solve a Nonlinear Bilevel Optimization Problem
    Elsobky, Bothina
    Ashry, Gehan
    FRACTAL AND FRACTIONAL, 2022, 6 (08)
  • [38] Active-Set Projected Trust-Region Algorithm for Box-Constrained Nonsmooth Equations
    L. Qi
    X. J. Tong
    D. H. Li
    Journal of Optimization Theory and Applications, 2004, 120 : 601 - 625
  • [39] TRFD: A derivative-free trust-region method based on finite differences for composite nonsmooth optimization
    Department of Mathematical Engineering, ICTEAM Institute, Université Catholique de Louvain, Louvain-la-Neuve
    B-1348, Belgium
    arXiv,
  • [40] A trust-region approach for computing Pareto fronts in multiobjective derivative-free optimization
    Mohammadi, Aboozar
    Hajinezhad, Davood
    Garcia, Alfredo
    OPTIMIZATION LETTERS, 2025, 19 (02) : 233 - 266