An active-set trust-region method for derivative-free nonlinear bound-constrained optimization

被引:35
|
作者
Gratton, Serge [2 ]
Toint, Philippe L. [1 ]
Troeltzsch, Anke [3 ]
机构
[1] FUNDP Univ Namur, Namur Res Ctr Complex Syst NAXYS, B-5000 Namur, Belgium
[2] ENSEEIHT, F-31000 Toulouse, France
[3] CERFACS, F-31057 Toulouse, France
来源
OPTIMIZATION METHODS & SOFTWARE | 2011年 / 26卷 / 4-5期
关键词
derivative-free optimization; bound constraints; nonlinear optimization; active-set methods; trust region; numerical experiments; PERFORMANCE PROFILES; ALGORITHMS; GEOMETRY; SEARCH;
D O I
10.1080/10556788.2010.549231
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider an implementation of a recursive model-based active-set trust-region method for solving bound-constrained nonlinear non-convex optimization problems without derivatives using the technique of self-correcting geometry proposed in K. Scheinberg and Ph.L. Toint [Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization. SIAM Journal on Optimization, (to appear), 2010]. Considering an active-set method in bound-constrained model-based optimization creates the opportunity of saving a substantial amount of function evaluations. It allows US to maintain much smaller interpolation sets while proceeding optimization in lower-dimensional subspaces. The resulting algorithm is shown to be numerically competitive.
引用
收藏
页码:873 / 894
页数:22
相关论文
共 50 条
  • [1] An Active Set Trust-Region Method for Bound-Constrained Optimization
    Morteza Kimiaei
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1721 - 1745
  • [2] An Active Set Trust-Region Method for Bound-Constrained Optimization
    Kimiaei, Morteza
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1721 - 1745
  • [3] Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization
    Andretta, M
    Birgin, EG
    Martínez, JM
    OPTIMIZATION, 2005, 54 (03) : 305 - 325
  • [4] A recursive l∞-trust-region method for bound-constrained nonlinear optimization
    Gratton, Serge
    Mouffe, Melodie
    Toint, Philippe L.
    Weber-Mendonca, Melissa
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 827 - 861
  • [5] A trust-region derivative-free algorithm for constrained optimization
    Conejo, P. D.
    Karas, E. W.
    Pedroso, L. G.
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (06): : 1126 - 1145
  • [6] A trust-region method by active-set strategy for general nonlinear optimization
    Ji, Ying
    Zhang, Ke-Cun
    Qu, Shao-Jian
    Zhou, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (02) : 229 - 241
  • [7] Numerical experience with a recursive trust-region method for multilevel nonlinear bound-constrained optimization
    Gratton, Serge
    Mouffe, Melodie
    Sartenaer, Annick
    Toint, Philippe L.
    Tomanos, Dimitri
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (03): : 359 - 386
  • [8] A DERIVATIVE-FREE TRUST-REGION METHOD FOR BIOBJECTIVE OPTIMIZATION
    Ryu, Jong-Hyun
    Kim, Sujin
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 334 - 362
  • [9] A progressive barrier derivative-free trust-region algorithm for constrained optimization
    Charles Audet
    Andrew R. Conn
    Sébastien Le Digabel
    Mathilde Peyrega
    Computational Optimization and Applications, 2018, 71 : 307 - 329
  • [10] A progressive barrier derivative-free trust-region algorithm for constrained optimization
    Audet, Charles
    Conn, Andrew R.
    Le Digabel, Sebastien
    Peyrega, Mathilde
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 71 (02) : 307 - 329