An active-set trust-region method for derivative-free nonlinear bound-constrained optimization

被引:39
作者
Gratton, Serge [2 ]
Toint, Philippe L. [1 ]
Troeltzsch, Anke [3 ]
机构
[1] FUNDP Univ Namur, Namur Res Ctr Complex Syst NAXYS, B-5000 Namur, Belgium
[2] ENSEEIHT, F-31000 Toulouse, France
[3] CERFACS, F-31057 Toulouse, France
关键词
derivative-free optimization; bound constraints; nonlinear optimization; active-set methods; trust region; numerical experiments; PERFORMANCE PROFILES; ALGORITHMS; GEOMETRY; SEARCH;
D O I
10.1080/10556788.2010.549231
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider an implementation of a recursive model-based active-set trust-region method for solving bound-constrained nonlinear non-convex optimization problems without derivatives using the technique of self-correcting geometry proposed in K. Scheinberg and Ph.L. Toint [Self-correcting geometry in model-based algorithms for derivative-free unconstrained optimization. SIAM Journal on Optimization, (to appear), 2010]. Considering an active-set method in bound-constrained model-based optimization creates the opportunity of saving a substantial amount of function evaluations. It allows US to maintain much smaller interpolation sets while proceeding optimization in lower-dimensional subspaces. The resulting algorithm is shown to be numerically competitive.
引用
收藏
页码:873 / 894
页数:22
相关论文
共 27 条
[1]  
[Anonymous], ADV OPTIMIZATION NUM
[2]  
[Anonymous], MPS SIAM SERIES OPTI
[3]  
[Anonymous], 2009, BOBYQA ALGORITHM BOU
[4]   A greedy algorithm for the optimal basis problem [J].
Burdakov, O .
BIT NUMERICAL MATHEMATICS, 1997, 37 (03) :591-599
[5]  
Burdakov O., 1995, TRPA9522 CERFACS
[6]  
Byrd RH, 2006, NONCONVEX OPTIM, V83, P35
[7]  
Ciarlet P.G., 1972, ARCH RATION MECH AN, V46, P177, DOI [DOI 10.1007/BF00252458, 10.1007/BF00252458, /10.1007/BF00252458]
[8]  
Conn A, 1997, On the convergence of derivative-free methods for unconstrained optimization, P83
[9]   Geometry of interpolation sets in derivative free optimization [J].
Conn, A. R. ;
Scheinberg, K. ;
Vicente, Luis N. .
MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) :141-172
[10]  
Conn A.R., 1992, SPRINGER SERIES COMP, V17