CT Scan Registration with 3D Dense Motion Field Estimation Using LSGAN

被引:8
作者
Anas, Essa R. [1 ]
Onsy, Ahmed [1 ]
Matuszewski, Bogdan J. [1 ]
机构
[1] Univ Cent Lancashire, Sch Engn, Comp Vis & Machine Learning CVML Grp, Preston PR1 2HE, Lancs, England
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS | 2020年 / 1248卷
关键词
Image registration; Convolutional neural network; Generative adversarial network; IMAGE REGISTRATION; SLIDING-MOTION;
D O I
10.1007/978-3-030-52791-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reports on a new CT volume registration method, using 3D Convolutional Neural Networks (CNN). The proposed method uses the Least Square Generative Adversarial Network (LSGAN) model consisting of the Contraction-Expansion registration network as the LSGAN's generator and a deep 3D CNN classification network as the LSGAN's discriminator. The training of the generator is performed first on its own, using Charbonnier and smoothness loss functions, with progressive weights update moving from lower to higher resolution layers of the Expander. Subsequently, the complete network (Contraction-Expansion with the Discriminator) is trained as a LSGAN network. For the training, CREATIS and COPDgene datasets have been used in a self-supervised paradigm, using 3D warping of the moving volume to estimate the error with respect to the reference volume. The input to the network has 256 x 256 x 128 x 2 voxels and the output is displacement field of 128 x 128 x 64 x 3 voxels. The Contraction-Expansion registration network, on its own, achieves mean error of 1.30 mm with 1.70 standard deviation (SD) on the DIR-LAB dataset. When the whole proposed LSGAN network is used, the mean error is further reduced to 1.13 mm with 0.67 (SD). Therefore, the use of the GAN paradigm reduces the mean error by approximately 15%, providing the state-of-the-art performance.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 21 条
[1]   Evaluating reinforcement learning agents for anatomical landmark detection [J].
Alansary, Amir ;
Oktay, Ozan ;
Li, Yuanwei ;
Le Folgoc, Loic ;
Hou, Benjamin ;
Vaillant, Ghislain ;
Kamnitsas, Konstantinos ;
Vlontzos, Athanasios ;
Glocker, Ben ;
Kainz, Bernhard ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 53 :156-164
[2]   A General and Adaptive Robust Loss Function [J].
Barron, Jonathan T. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4326-4334
[3]   A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive [J].
Castillo, Richard ;
Castillo, Edward ;
Fuentes, David ;
Ahmad, Moiz ;
Wood, Abbie M. ;
Ludwig, Michelle S. ;
Guerrero, Thomas .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (09) :2861-2877
[4]   A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets [J].
Castillo, Richard ;
Castillo, Edward ;
Guerra, Rudy ;
Johnson, Valen E. ;
McPhail, Travis ;
Garg, Amit K. ;
Guerrero, Thomas .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (07) :1849-1870
[5]   Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces [J].
Dalca, Adrian V. ;
Balakrishnan, Guha ;
Guttag, John ;
Sabuncu, Mert R. .
MEDICAL IMAGE ANALYSIS, 2019, 57 :226-236
[6]   Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks [J].
Eppenhof, Koen A. J. ;
Pluim, Josien P. W. .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (02)
[7]  
Gal Y, 2016, PR MACH LEARN RES, V48
[8]   Adversarial Deformation Regularization for Training Image Registration Neural Networks [J].
Hu, Yipeng ;
Gibson, Eli ;
Ghavami, Nooshin ;
Bonmati, Ester ;
Moore, Caroline M. ;
Emberton, Mark ;
Vercauteren, Tom ;
Noble, J. Alison ;
Barratt, Dean C. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :774-782
[9]  
Jaderberg M, 2015, ADV NEUR IN, V28
[10]  
Mahapatra D., 2018, ARXIV PREPRINT ARXIV