Ramsey Numbers of Trails

被引:2
作者
Osumi, Masatoshi [1 ]
机构
[1] Univ Electrocommun, Chofu, Tokyo 1828585, Japan
关键词
Ramsey theory; trails; Eulerian graphs; semi-Eulerian graphs;
D O I
10.1587/transfun.2021DMP0003
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We initiate the study of Ramsey numbers of trails. Let k >= 2 be a positive integer. The Ramsey number of trails with k vertices is defined as the the smallest number n such that for every graph H with n vertices, H or the complete (H) over bar contains a trail with k vertices. We prove that the Ramsey number of trails with k vertices is at most k and at least 2 root k + (Theta)1 degrees. This improves the trivial upper bound of [3 k/2] - 1.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 6 条
[1]  
[Anonymous], 2011, AN EATCS SERIES
[2]  
Gerencser L., 1967, ANN U SCI BUDAP, V10, P167
[3]  
Graham R.L., 1990, RAMSEY THEORY
[4]  
Katz M., 2018, STUDENT MATH LIB, V87, P1
[5]  
Radziszowski SP, 2017, ELECTRON J COMB
[6]  
Rosta V, 2004, ELECTRON J COMB