Generation of Stochastic Interconnect Responses via Gaussian Process Latent Variable Models

被引:1
作者
De Ridder, Simon [1 ]
Deschrijver, Dirk [1 ]
Manfredi, Paolo [2 ]
Dhaene, Tom [1 ]
Vande Ginste, Dries [1 ]
机构
[1] Univ Ghent, Imec, Dept Informat Technol, B-9000 Ghent, Belgium
[2] Politecn Torino, Dept Elect & Telecommun, I-10129 Turin, Italy
关键词
Gaussian process latent variable model (GP-LVM); generative models; high-speed connectors and links; statistical link analysis; stochastic modeling; UNCERTAINTY QUANTIFICATION;
D O I
10.1109/TEMC.2018.2830104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a novel generative model for stochastic device responses using limited available data. This model is oblivious to any varying design parameters or their distribution and only requires a small set of "training" responses. Using this model, new responses are efficiently generated whose distribution closely matches that of the real data, e.g., for use in Monte-Carlo-like analyses. The modeling methodology consists of a vector fitting step, where device responses are represented by a rational model, followed by the optimization of a Gaussian process latent variable model. Passivity is guaranteed by a posteriori discarding of nonpassive responses. The novel model is shown to considerably outperform a previous generative model, as evidenced by comparing accuracies of distribution estimation for the case of differential-to-common mode conversion in two coupled microstrip lines.
引用
收藏
页码:582 / 585
页数:4
相关论文
共 15 条
  • [1] Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of High-Speed Circuits
    Ahadi, Majid
    Roy, Sourajeet
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (10) : 1640 - 1652
  • [2] DISTRIBUTION OF 2-SAMPLE CRAMER-VON MISES CRITERION
    ANDERSON, TW
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03): : 1148 - &
  • [3] A Generative Modeling Framework for Statistical Link Analysis Based on Sparse Data
    De Ridder, Simon
    Manfredi, Paolo
    De Geest, Jan
    Deschrijver, Dirk
    De Zutter, Daniel
    Dhaene, Tom
    Vande Ginste, Dries
    [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2018, 8 (01): : 21 - 31
  • [4] Macromodeling of multiport systems using a fast implementation of the vector fitting method
    Deschrijver, Dirk
    Mrozowski, Michal
    Dhaene, Tom
    De Zutter, Daniel
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2008, 18 (06) : 383 - 385
  • [5] A Wideband Common-Mode Suppression Filter for Bend Discontinuities in Differential Signaling Using Tightly Coupled Microstrips
    Gazda, Celina
    Vande Ginste, Dries
    Rogier, Hendrik
    Wu, Ruey-Beei
    De Zutter, Daniel
    [J]. IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2010, 33 (04): : 969 - 978
  • [6] On Mode Conversion in Geometrically Unbalanced Differential Lines and Its Analogy With Crosstalk
    Grassi, Flavia
    Yang, Yuehong
    Wu, Xinglong
    Spadacini, Giordano
    Pignari, Sergio A.
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2015, 57 (02) : 283 - 291
  • [7] Rational approximation of frequency domain responses by vector fitting
    Gustavsen, B
    Semlyen, A
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 1999, 14 (03) : 1052 - 1061
  • [8] MacKay David J C, 2005, Information Theory, Inference and Learning Algorithms, V4th
  • [9] Generalized Decoupled Polynomial Chaos for Nonlinear Circuits With Many Random Parameters
    Manfredi, Paolo
    Vande Ginste, Dries
    De Zutter, Daniel
    Canavero, Flavio G.
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (08) : 505 - 507
  • [10] Stochastic Modeling of Nonlinear Circuits via SPICE-Compatible Spectral Equivalents
    Manfredi, Paolo
    Vande Ginste, Dries
    De Zutter, Daniel
    Canavero, Flavio G.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (07) : 2057 - 2065