Beyond the Beta Integral Method: Transformation Formulas for Hypergeometric Functions via Meijer's G Function

被引:4
作者
Karp, Dmitrii [1 ,2 ]
Prilepkina, Elena [2 ,3 ]
机构
[1] Holon Inst Technol, Dept Math, IL-5810201 Holon, Israel
[2] Far Eastern Fed Univ, Vladivostok 690091, Russia
[3] Inst Appl Math FEBRAS, Vladivostok 690041, Russia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 08期
关键词
generalized hypergeometric function; hypergeometric identity; Miller-Paris transformations; summation formulas; Meijer's G function; EXTENSIONS; SERIES; IDENTITIES; SUMMATION;
D O I
10.3390/sym14081541
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The beta integral method proved itself as a simple but nonetheless powerful method for generating hypergeometric identities at a fixed argument. In this paper, we propose a generalization by substituting the beta density with a particular type of Meijer's G function. By the application of our method to known transformation formulas, we derive about forty hypergeometric identities, the majority of which are believed to be new.
引用
收藏
页数:31
相关论文
共 46 条
  • [1] Andrews G.E., 1999, ENCY MATH ITS APPL 7
  • [2] Determinants in plane partition enumeration
    Andrews, GE
    Stanton, DW
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 273 - 282
  • [3] [Anonymous], 2010, HDB MATH FUNCTIONS
  • [4] [Anonymous], 1964, GEN HYPERGEOMETRIC S
  • [5] Askey R., 1994, MATH LEGACY WILHELM, V169, P29
  • [6] Blaschke P., 2018, ARXIV
  • [7] Candezano MAC, 2020, LOBACHEVSKII J MATH, V41, P747, DOI 10.1134/S1995080220050029
  • [8] Clausen's Series 3F2(1) with Integral Parameter Differences
    Chen, Kwang-Wu
    [J]. SYMMETRY-BASEL, 2021, 13 (10):
  • [9] Chen XJ, 2021, ANAL MATH PHYS, V11, DOI 10.1007/s13324-021-00503-6
  • [10] Cho YK, 2020, CONSTR APPROX, V51, P49, DOI 10.1007/s00365-019-09462-5