A guide to nucleic acid detection by single-molecule kinetic fingerprinting

被引:26
|
作者
Johnson-Buck, Alexander [1 ,2 ,3 ]
Li, Jieming [2 ]
Tewari, Muneesh [1 ,3 ,4 ,5 ,6 ,7 ]
Walter, Nils G. [2 ,3 ,6 ]
机构
[1] Univ Michigan, Dept Internal Med, Div Hematol Oncol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Chem, Single Mol Anal Grp, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr RNA Biomed, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Ctr Computat Med & Bioinfonnat, Ann Arbor, MI 48109 USA
[7] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA
关键词
Single-molecule fluorescence microscopy; Kinetic fingerprinting; Amplification-free; MicroRNA; DNA; Mutation; AMPLIFICATION-FREE; RESISTANCE; MUTATIONS; THERAPY; EGFR;
D O I
10.1016/j.ymeth.2018.08.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Conventional methods for detecting small quantities of nucleic acids require amplification by the polymerase chain reaction (PCR), which necessitates prior purification and introduces copying errors. While amplification-free methods do not have these shortcomings, they are generally orders of magnitude less sensitive and specific than PCR-based methods. In this review, we provide a practical guide to a novel amplification-free method, single-molecule recognition through equilibrium Poisson sampling (SiMREPS), that provides both single-molecule sensitivity and single-base selectivity by monitoring the repetitive interactions of fluorescent probes to immobilized targets. We demonstrate how this kinetic fingerprinting filters out background arising from the inevitable nonspecific binding of probes, yielding virtually zero background signal. As practical applications of this digital detection methodology, we present the quantification of microRNA miR-16 and the detection of the mutation EGFR L858R with an apparent single-base discrimination factor of over 3 million.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [11] Amino Acid Stabilization of Nucleic Acid Secondary Structure: Kinetic Insights from Single-Molecule Studies
    Nicholson, David A.
    Sengupta, Abhigyan
    Sung, Hsuan-Lei
    Nesbitt, David J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (43): : 9869 - 9876
  • [12] Single-Molecule Arrays for Protein and Nucleic Acid Analysis
    Cohen, Limor
    Walt, David R.
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 10, 2017, 10 : 345 - 363
  • [13] Single-molecule analysis of nucleic acid biomarkers - A review
    Gilboa, Tal
    Garden, Padric M.
    Cohen, Limor
    ANALYTICA CHIMICA ACTA, 2020, 1115 : 61 - 85
  • [14] Multiplexed Nucleic Acid Sensing with Single-Molecule FRET
    Kaur, Anisa
    Sapkota, Kumar
    Dhakal, Soma
    ACS SENSORS, 2019, 4 (03): : 623 - 633
  • [15] Single-Molecule Protein Fingerprinting with Nanopores
    Restrepo-Perez, Laura
    Soskine, Misha
    John, Shalini
    Aksimentiev, Aleksei
    Maglia, Giovanni
    Joo, Chirlmin
    Dekker, Cees
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 330A - 330A
  • [16] Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic "fingerprinting"
    Liu, Shixin
    Bokinsky, Gregory
    Walter, Nils G.
    Zhuang, Xiaowei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (31) : 12634 - 12639
  • [17] Single-molecule spectroscopy for nucleic acid analysis: A new approach for disease detection and genomic analysis
    Goodwin, PM
    Nolan, RL
    Cai, H
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2004, 5 (03) : 271 - 278
  • [18] Combining single-molecule manipulation and single-molecule detection
    Cordova, Juan Carlos
    Das, Dibyendu Kumar
    Manning, Harris W.
    Lang, Matthew J.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2014, 28 : 142 - 148
  • [19] Single-molecule manipulation of nucleic acids
    Bockelmann, U
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (03) : 368 - 373
  • [20] Single-molecule fluorescence of nucleic acids
    Mollova, ET
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2002, 6 (06) : 823 - 828