Optimization of nanocavity field enhancement using two-dimensional plasmonic photonic crystals

被引:6
作者
Tao Xing [1 ]
Dong ZhenChao [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2012年 / 57卷 / 01期
基金
中国国家自然科学基金;
关键词
plasmonic photonic crystal; finite-difference time-domain method; localized surface plasmon; Purcell factor; RAMAN-SCATTERING; SPECTROSCOPY; MOLECULES; EMISSION;
D O I
10.1007/s11434-011-4832-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have investigated the influence of Ag nanorod radius (r) on the resonant modes of a two-dimensional plasmonic photonic crystal (PPC) with dipole sources embedded into the central vacancy area, using finite-difference time-domain methods. Both the localized surface plasmon (LSP) mode of individual Ag nanorods and the resonant cavity mode of PPC are found to vary as a function of r. The resonant cavity mode is strongly enhanced as r is increased, while the LSP signal will eventually become no longer discernable in the Fourier spectrum of the time-evolved field. An optimized condition for the nanocavity field enhancement is found for a given PPC periodicity (e.g. d = 375 nm) with the critical nanorod radius r (c) = d/3. At this point the resonant cavity mode has the strongest field enhancement, best field confinement and largest Q-factor. We attribute this to competition between the blocking of cavity confined light to radiate out when the cavity resonant frequency falls inside the opened photonic stopband as r reaches r (c), and the transfer of cavity mode energy to inter-particle plasmons when r is further increased.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 50 条
[41]   Scalable photonic sources using two-dimensional lead halide perovskite superlattices [J].
Jagielski, Jakub ;
Solari, Simon F. ;
Jordan, Lucie ;
Scullion, Declan ;
Bluelle, Balthasar ;
Li, Yen-Ting ;
Krumeich, Frank ;
Chiu, Yu-Cheng ;
Ruhstaller, Beat ;
Santos, Elton J. G. ;
Shih, Chih-Jen .
NATURE COMMUNICATIONS, 2020, 11 (01)
[42]   Quantification of the Real Plasmonic Field Transverse Distribution in a Nanocavity Using the Vibrational Stark Effect [J].
Chen, Siyu ;
Xiao, Yuan-Hui ;
Qin, Miao ;
Zhou, Guoliang ;
Dong, Ronglu ;
Devasenathipathy, Rajkumar ;
Wu, De-Yin ;
Yang, Liangbao .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (07) :1708-1713
[43]   Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber [J].
Ogawa, Shinpei ;
Komoda, Junya ;
Masuda, Kyohei ;
Kimata, Masafumi .
INFRARED TECHNOLOGY AND APPLICATIONS XXXIX, 2013, 8704
[44]   Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber [J].
Ogawa, Shinpei ;
Komoda, Junya ;
Masuda, Kyohei ;
Kimata, Masafumi .
OPTICAL ENGINEERING, 2013, 52 (12)
[45]   Strong three-dimensional field localization and enhancement on deep sinusoidal gratings with two-dimensional periodicity [J].
Popov, Evgeny ;
Wenger, Jerome ;
Hoose, John ;
Tonchev, Svetlen .
OPTICS LETTERS, 2013, 38 (22) :4876-4879
[46]   Two-dimensional MoS2 for photonic applications [J].
Esposito, F. ;
Bosi, M. ;
Attolini, G. ;
Golovynskyi, S. ;
Seravalli, L. .
SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2025, 28 (01) :37-46
[47]   Two-dimensional optoelectronic devices for silicon photonic integration [J].
Tang, Zilan ;
Chen, Shula ;
Li, Dong ;
Wang, Xiaoxia ;
Pan, Anlian .
JOURNAL OF MATERIOMICS, 2023, 9 (03) :551-567
[48]   Mode Cooperation in a Two-Dimensional Plasmonic Distributed Feedback Laser [J].
Nefedkin, Nikita E. ;
Zyablovsky, Alexander A. ;
Andrianov, Evgeny S. ;
Pukhov, Alexander A. ;
Vinogradov, Alexey P. .
ACS PHOTONICS, 2018, 5 (08) :3031-3039
[49]   Plasmonic modes at inclined edges of anisotropic two-dimensional materials [J].
Sokolik, Alexey A. ;
Kotov, Oleg, V ;
Lozovik, Yurii E. .
PHYSICAL REVIEW B, 2021, 103 (15)
[50]   Tuning full photonic band gap with plasma frequency in two-dimensional photonic crystals composed of anisotropic dielectric rods in plasma background [J].
Ramezani A.H. ;
Fathollahi Khalkhali T. ;
Moghadam M.R. .
Journal of Optics, 2018, 47 (4) :489-495