Optimization of nanocavity field enhancement using two-dimensional plasmonic photonic crystals

被引:5
作者
Tao Xing [1 ]
Dong ZhenChao [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2012年 / 57卷 / 01期
基金
中国国家自然科学基金;
关键词
plasmonic photonic crystal; finite-difference time-domain method; localized surface plasmon; Purcell factor; RAMAN-SCATTERING; SPECTROSCOPY; MOLECULES; EMISSION;
D O I
10.1007/s11434-011-4832-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have investigated the influence of Ag nanorod radius (r) on the resonant modes of a two-dimensional plasmonic photonic crystal (PPC) with dipole sources embedded into the central vacancy area, using finite-difference time-domain methods. Both the localized surface plasmon (LSP) mode of individual Ag nanorods and the resonant cavity mode of PPC are found to vary as a function of r. The resonant cavity mode is strongly enhanced as r is increased, while the LSP signal will eventually become no longer discernable in the Fourier spectrum of the time-evolved field. An optimized condition for the nanocavity field enhancement is found for a given PPC periodicity (e.g. d = 375 nm) with the critical nanorod radius r (c) = d/3. At this point the resonant cavity mode has the strongest field enhancement, best field confinement and largest Q-factor. We attribute this to competition between the blocking of cavity confined light to radiate out when the cavity resonant frequency falls inside the opened photonic stopband as r reaches r (c), and the transfer of cavity mode energy to inter-particle plasmons when r is further increased.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 50 条
  • [31] Ordered Arrays of Ge(Si) Quantum Dots Incorporated into Two-Dimensional Photonic Crystals
    Smagina, Zn, V
    Zinovyev, V. A.
    Rodyakina, E. E.
    Fomin, B., I
    Stepikhova, M., V
    Yablonskiy, A. N.
    Gusev, S. A.
    Novikov, A., V
    Dvureehenskii, A., V
    [J]. SEMICONDUCTORS, 2019, 53 (10) : 1329 - 1333
  • [32] Dispersion properties of two-dimensional dispersive and anisotropic-magnetized-plasma photonic crystals
    Qi Li-Mei
    Yang Zi-Qiang
    Lan Feng
    Gao Xi
    Shi Zong-Jun
    Liang Zheng
    [J]. ACTA PHYSICA SINICA, 2010, 59 (01) : 351 - 359
  • [33] Mechanism of near-field Raman enhancement in two-dimensional systems
    Maximiano, Rodolfo V.
    Beams, Ryan
    Novotny, Lukas
    Jorio, Ado
    Cancado, Luiz Gustavo
    [J]. PHYSICAL REVIEW B, 2012, 85 (23)
  • [34] Control of Thermal Radiation by Intersubband Transitions in Quantum Wells and Two-Dimensional Photonic Crystals
    De Zoysa, Menaka
    Asano, Takashi
    Minato, Yasuaki
    Noda, Susumu
    [J]. 2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [35] Absolute photonic band gap of the two-dimensional hollow-dielectric triangular-lattice photonic crystals
    Feng S.
    Yang Y.
    Wang Y.
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2010, 30 (04): : 1173 - 1177
  • [36] Influence of two-dimensional molybdenum disulfide on the surface enhanced Raman scattering effect in a silver nanocavity
    Dai, Qiyuan
    Wei, Yong
    Ma, Weiqi
    Li, Li
    Pei, Huan
    [J]. OPTICS COMMUNICATIONS, 2022, 508
  • [37] Topologically-protected optical bistability based on two-dimensional photonic crystal L6 nanocavity dimer array
    Yang, Yuqing
    Zhang, Tianyue
    Yan, Jieyun
    Li, Peigang
    Li, Zhitong
    [J]. OPTICS EXPRESS, 2024, 32 (16): : 28462 - 28471
  • [38] Two-dimensional photonic crystal polarization splitter
    Li, MY
    Gu, PF
    Jie, X
    Li, YY
    [J]. Nanophotonics, Nanostructure, and Nanometrology, 2005, 5635 : 381 - 389
  • [39] Two-dimensional fivefold photonic crystal microcavity
    Zhou, Taojie
    Li, Jiagen
    Zhou, Jie
    He, Kebo
    Qiu, Zhiren
    Qiu, Bocang
    Zhang, Zhaoyu
    [J]. JOURNAL OF NANOPHOTONICS, 2017, 11 (04)
  • [40] Scalable photonic sources using two-dimensional lead halide perovskite superlattices
    Jagielski, Jakub
    Solari, Simon F.
    Jordan, Lucie
    Scullion, Declan
    Bluelle, Balthasar
    Li, Yen-Ting
    Krumeich, Frank
    Chiu, Yu-Cheng
    Ruhstaller, Beat
    Santos, Elton J. G.
    Shih, Chih-Jen
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)