Phase clustering of high frequency EEG: MEG components

被引:0
|
作者
da Silva, Fernando H. Lopes [1 ]
Gomez, Jaime Parra [2 ,3 ]
Velis, Dimitri N. [2 ,3 ]
Kalitzin, Stiliyan [2 ,3 ]
机构
[1] Univ Amsterdam, Swammerdam Inst Life Sci, Ctr Neurosci, NL-1098 SM Amsterdam, Netherlands
[2] Dutch Epilepsy Clin Fdn, Dept Med Phys, NL-2103 SW Heemstede, Netherlands
[3] Dutch Epilepsy Clin Fdn, Dept Clin Neurophysiol, NL-2103 SW Heemstede, Netherlands
关键词
EEG; high frequency; phase clustering; MEG;
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The study of phase consistency of high frequency EEG/MEG components can reveal properties of neuronal networks that are informative about their excitability state. The clue is that these properties are easier to put in evidence when the response of the neuronal networks is evoked by an adequate stimulation paradigm. The latter may be considered a probe of neuronal excitability state capable of revealing hidden information contained in the phase structure of neuronal activities. In this context the high frequency band components appear to be the most reactive signals.
引用
收藏
页码:306 / 310
页数:5
相关论文
共 50 条
  • [31] Decoding perceptual thresholds from MEG/EEG
    Bekhti, Yousra
    Zilber, Nicolas
    Pedregosa, Fabian
    Ciuciu, Philippe
    van Wassenhove, Virginie
    Gramfort, Alexandre
    2014 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING, 2014,
  • [32] Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging
    Ramirez, Rey R.
    Kopell, Brian H.
    Butson, Christopher R.
    Hiner, Bradley C.
    Baillet, Sylvain
    NEUROIMAGE, 2011, 56 (01) : 78 - 92
  • [33] Bayesian model averaging in EEG/MEG imaging
    Trujillo-Barreto, NJ
    Aubert-Vázquez, E
    Valdés-Sosa, PA
    NEUROIMAGE, 2004, 21 (04) : 1300 - 1319
  • [34] Time-Variant Phase-Locking Properties of EEG/MEG Oscillations during Photic Driving
    Wacker, M.
    Schwab, K.
    Galicki, M.
    Witte, H.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 2008 - 2011
  • [35] Which Physiological Components are More Suitable for Visual ERP Based Brain–Computer Interface? A Preliminary MEG/EEG Study
    Luigi Bianchi
    Saber Sami
    Arjan Hillebrand
    Ian P. Fawcett
    Lucia Rita Quitadamo
    Stefano Seri
    Brain Topography, 2010, 23 : 180 - 185
  • [36] Anatomical constraints on source models for high-resolution EEG and MEG derived from MRI
    Srinivasan, Ramesh
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2006, 5 (04) : 389 - 399
  • [37] Identification of the epileptogenic tuber in patients with tuberous sclerosis: A comparison of high-resolution EEG and MEG
    Jansen, FE
    Huiskamp, G
    van Huffelen, AC
    Bourez-Swart, M
    Boere, E
    Gebbink, T
    Vincken, KL
    Nieuwenhuizen, O
    EPILEPSIA, 2006, 47 (01) : 108 - 114
  • [38] Benefit of simultaneous recording of EEG and MEG in dipole localization
    Yoshinaga, H
    Nakahori, T
    Ohtsuka, Y
    Oka, E
    Kitamura, Y
    Kiriyama, H
    Kinugasa, K
    Miyamoto, K
    Hoshida, T
    EPILEPSIA, 2002, 43 (08) : 924 - 928
  • [39] Hand movement direction decoded from MEG and EEG
    Waldert, Stephan
    Preissl, Hubert
    Demandt, Evariste
    Braun, Christoph
    Birbaumer, Niels
    Aertsen, Ad
    Mehring, Carsten
    JOURNAL OF NEUROSCIENCE, 2008, 28 (04) : 1000 - 1008
  • [40] Automated rejection and repair of bad trials in MEG/EEG
    Jas, Mainak
    Engemann, Denis
    Raimondo, Federico
    Bekhti, Yousra
    Gramfort, Alexandre
    2016 6TH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI), 2016, : 41 - 44