Fast Scalable Image Restoration Using Total Variation Priors and Expectation Propagation

被引:3
作者
Yao, Dan [1 ]
McLaughlin, Stephen [1 ]
Altmann, Yoann [1 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Image restoration; Bayes methods; TV; Uncertainty; Image edge detection; Estimation; Noise reduction; Variational inference; image restoration; expectation propagation (EP); expectation maximization (EM); hyperparameter estimation; INVERSE PROBLEMS; MONTE-CARLO; FRAMEWORK;
D O I
10.1109/TIP.2022.3202092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a scalable approximate Bayesian method for image restoration using Total Variation (TV) priors, with the ability to offer uncertainty quantification. In contrast to most optimization methods based on maximum a posteriori estimation, we use the Expectation Propagation (EP) framework to approximate minimum mean squared error (MMSE) estimates and marginal (pixel-wise) variances, without resorting to Monte Carlo sampling. For the classical anisotropic TV-based prior, we also propose an iterative scheme to automatically adjust the regularization parameter via Expectation Maximization (EM). Using Gaussian approximating densities with diagonal covariance matrices, the resulting method allows highly parallelizable steps and can scale to large images for denoising, deconvolution, and compressive sensing (CS) problems. The simulation results illustrate that such EP methods can provide a posteriori estimates on par with those obtained via sampling methods but at a fraction of the computational cost. Moreover, EP does not exhibit strong underestimation of posteriori variances, in contrast to variational Bayes alternatives.
引用
收藏
页码:5762 / 5773
页数:12
相关论文
共 57 条
  • [1] Fast Image Recovery Using Variable Splitting and Constrained Optimization
    Afonso, Manya V.
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) : 2345 - 2356
  • [2] [Anonymous], 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition
  • [3] [Anonymous], 2006, P 14 EUR SIGN PROC C
  • [4] Attias H, 2000, ADV NEUR IN, V12, P209
  • [5] Digital image restoration
    Banham, MR
    Katsaggelos, AK
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1997, 14 (02) : 24 - 41
  • [6] Besag J., 1989, J APPL STAT, V16, P395, DOI [DOI 10.1080/02664768900000049, 10.1080/02664768900000049]
  • [7] Hyperspectral Remote Sensing Data Analysis and Future Challenges
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Camps-Valls, Gustavo
    Scheunders, Paul
    Nasrabadi, Nasser M.
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) : 6 - 36
  • [8] Bishop C. M, 2006, PATTERN RECOGN
  • [9] Variational Inference: A Review for Statisticians
    Blei, David M.
    Kucukelbir, Alp
    McAuliffe, Jon D.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 859 - 877
  • [10] Restoring Degraded Face Images: A Case Study in Matching Faxed, Printed, and Scanned Photos
    Bourlai, Thirimachos
    Ross, Arun
    Jain, Anil K.
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2011, 6 (02) : 371 - 384