Displacement Interpolation Using Lagrangian Mass Transport

被引:190
作者
Bonneel, Nicolas [1 ,2 ]
van de Panne, Michiel [1 ]
Paris, Sylvain
Heidrich, Wolfgang [1 ]
机构
[1] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
[2] ALICE INRIA Nancy, Nancy, France
来源
ACM TRANSACTIONS ON GRAPHICS | 2011年 / 30卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
displacement interpolation; mass transport;
D O I
10.1145/2024156.2024192
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Interpolation between pairs of values, typically vectors, is a fundamental operation in many computer graphics applications. In some cases simple linear interpolation yields meaningful results without requiring domain knowledge. However, interpolation between pairs of distributions or pairs of functions often demands more care because features may exhibit translational motion between exemplars. This property is not captured by linear interpolation. This paper develops the use of displacement interpolation for this class of problem, which provides a generic method for interpolating between distributions or functions based on advection instead of blending. The functions can be non-uniformly sampled, high-dimensional, and defined on non-Euclidean manifolds, e. g., spheres and tori. Our method decomposes distributions or functions into sums of radial basis functions (RBFs). We solve a mass transport problem to pair the RBFs and apply partial transport to obtain the interpolated function. We describe practical methods for computing the RBF decomposition and solving the transport problem. We demonstrate the interpolation approach on synthetic examples, BRDFs, color distributions, environment maps, stipple patterns, and value functions.
引用
收藏
页数:11
相关论文
共 49 条
  • [1] AHMAD N., 2010, ARXIV10084419V1
  • [2] Ahuja R., 1993, NETWORK FLOWS THEORY
  • [3] [Anonymous], 2009, ICCV
  • [4] [Anonymous], 2008, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
  • [5] [Anonymous], 2010, ACM T GRAPHIC, DOI DOI 10.1145/1778765.1778835
  • [6] [Anonymous], P ACM SIGGRAPH 99
  • [7] Ashikhmin M., 2000, Journal of Graphics Tools, V5, P25, DOI 10.1080/10867651.2000.10487522
  • [8] Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
  • [9] BIELING J., 2010, EFFICIENT GPU IMPLEM, P1
  • [10] On interpolating between probability distributions
    Bursal, FH
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1996, 77 (2-3) : 213 - 244