Modified projective synchronization of uncertain fractional order hyperchaotic systems

被引:35
作者
Bai, Jing [1 ]
Yu, Yongguang [1 ]
Wang, Sha [1 ]
Song, Yu [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Modified projective synchronization; Fractional order; Hyperchaotic system; Uncertain parameters; LAG SYNCHRONIZATION; CHAOTIC SYSTEMS; GENERALIZED SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; PHASE SYNCHRONIZATION; UNKNOWN-PARAMETERS; NETWORKS; OSCILLATORS; EQUATIONS;
D O I
10.1016/j.cnsns.2011.09.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Bossier hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1921 / 1928
页数:8
相关论文
共 50 条
[41]   GENERALIZED SYNCHRONIZATION OF FRACTIONAL ORDER HYPERCHAOTIC LORENZ SYSTEM [J].
Wang, Tianshu ;
Wang, Xingyuan .
MODERN PHYSICS LETTERS B, 2009, 23 (17) :2167-2178
[42]   Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters [J].
Sudheer, K. Sebastian ;
Sabir, M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) :4058-4064
[43]   Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rossler systems [J].
Cafagna, Donato ;
Grassi, Giuseppe .
NONLINEAR DYNAMICS, 2012, 68 (1-2) :117-128
[44]   Continuous adaptive finite-time modified function projective lag synchronization of uncertain hyperchaotic systems [J].
Tran, Xuan-Toa ;
Kang, Hee-Jun .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (03) :853-860
[45]   Fractional Order Adaptive Synchronization of a New Hyperchaotic System with an Uncertain Parameter [J].
Zhang, Longge .
2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, :58-60
[46]   Full state hybrid projective synchronization of variable-order fractional chaotic/hyperchaotic systems with nonlinear external disturbances and unknown parameters [J].
Zhang, Li ;
Liu, Tao .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03) :1064-1076
[47]   Control and adaptive modified function projective synchronization of different hyperchaotic dynamical systems [J].
El-Dessoky, M. M. ;
Almohammadi, Nehad ;
Alzahrani, Ebraheem .
AIMS MATHEMATICS, 2023, 8 (10) :23621-23634
[48]   Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance [J].
Fu, Guiyuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2602-2608
[49]   Impulsive synchronization of fractional order hyperchaotic systems based on comparison system [J].
Ma Tie-Dong ;
Jiang Wei-Bo ;
Fu Jie .
ACTA PHYSICA SINICA, 2012, 61 (09)
[50]   Fractional matrix and inverse matrix projective synchronization methods for synchronizing the disturbed fractional-order hyperchaotic system [J].
He, Jinman ;
Chen, Fangqi ;
Lei, Tengfei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6907-6920