Modified projective synchronization of uncertain fractional order hyperchaotic systems

被引:35
作者
Bai, Jing [1 ]
Yu, Yongguang [1 ]
Wang, Sha [1 ]
Song, Yu [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Modified projective synchronization; Fractional order; Hyperchaotic system; Uncertain parameters; LAG SYNCHRONIZATION; CHAOTIC SYSTEMS; GENERALIZED SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; PHASE SYNCHRONIZATION; UNKNOWN-PARAMETERS; NETWORKS; OSCILLATORS; EQUATIONS;
D O I
10.1016/j.cnsns.2011.09.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Bossier hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1921 / 1928
页数:8
相关论文
共 50 条
[21]   Stability analysis and modified projective synchronization of fractional-order hyperchaotic dynamical systems using nonlinear controllers [J].
Ray, S. Saha .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (06)
[22]   Modified projective synchronization between two different hyperchaotic systems with unknown or/and uncertain parameters [J].
Luo Runzi ;
Deng Shucheng ;
Wei Zhengmin .
PHYSICA SCRIPTA, 2010, 81 (01)
[23]   Adaptive modified function projective synchronization of different hyperchaotic systems [J].
Wang Jian-An ;
Liu He-Ping .
ACTA PHYSICA SINICA, 2010, 59 (04) :2265-2271
[24]   The synchronization method for fractional-order hyperchaotic systems [J].
Feng, Dali ;
An, Hongli ;
Zhu, Haixing ;
Zhao, Yunfeng .
PHYSICS LETTERS A, 2019, 383 (13) :1427-1434
[25]   General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters [J].
Tang, Yang ;
Fang, Jian-an .
PHYSICS LETTERS A, 2008, 372 (11) :1816-1826
[26]   On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization [J].
Mahmoud, Gamal M. ;
Ahmed, Mansour E. ;
Abed-Elhameed, Tarek M. .
OPTIK, 2017, 130 :398-406
[27]   Modified function projective combination synchronization of hyperchaotic systems [J].
Sudheer, K. Sebastian ;
Sabir, M. .
PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (03)
[28]   Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system [J].
Liu, Ling ;
Liang, Deliang ;
Liu, Chongxin .
NONLINEAR DYNAMICS, 2012, 69 (04) :1929-1939
[29]   Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems [J].
Bouzeriba, A. ;
Boulkroune, A. ;
Bouden, T. .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2016, 7 (05) :893-908
[30]   Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication [J].
Wu, Xiangjun ;
Wang, Hui ;
Lu, Hongtao .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1441-1450