Modified projective synchronization of uncertain fractional order hyperchaotic systems

被引:35
作者
Bai, Jing [1 ]
Yu, Yongguang [1 ]
Wang, Sha [1 ]
Song, Yu [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Modified projective synchronization; Fractional order; Hyperchaotic system; Uncertain parameters; LAG SYNCHRONIZATION; CHAOTIC SYSTEMS; GENERALIZED SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; PHASE SYNCHRONIZATION; UNKNOWN-PARAMETERS; NETWORKS; OSCILLATORS; EQUATIONS;
D O I
10.1016/j.cnsns.2011.09.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Bossier hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1921 / 1928
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[2]   Characterization of intermittent lag synchronization [J].
Boccaletti, S ;
Valladares, DL .
PHYSICAL REVIEW E, 2000, 62 (05) :7497-7500
[3]   Adaptive synchronization of different chaotic systems with fully unknown parameters [J].
Chen, Xiaoyun ;
Lu, Jianfeng .
PHYSICS LETTERS A, 2007, 364 (02) :123-128
[4]  
Cole K.S., 1993, P COLD SPRING HARB S, P107
[5]   A new approach to communications using chaotic signals [J].
Corron, NJ ;
Hahs, DW .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (05) :373-382
[6]   FRACTALS AND ROUGH ELECTRODES [J].
DELEVIE, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 281 (1-2) :1-21
[7]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[8]   Fractional-order diffusion-wave equation [J].
ElSayed, AMA .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) :311-322
[9]   On fractional calculus and fractional multipoles in electromagnetism [J].
Engheta, N .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (04) :554-566
[10]   Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks [J].
Feng, Cun-Fang ;
Xu, Xin-Jian ;
Wang, Sheng-Jun ;
Wang, Ying-Hai .
CHAOS, 2008, 18 (02)