A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation

被引:23
作者
Ak, Turgut [1 ]
Karakoc, S. Battal Gazi [2 ]
Biswas, Anjan [3 ,4 ]
机构
[1] Yalova Univ, Fac Engn, Dept Transportat Engn, TR-77100 Yalova, Turkey
[2] Nevsehir Haci Bektas Veli Univ, Fac Sci & Art, Dept Math, TR-50300 Nevsehir, Turkey
[3] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[4] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2017年 / 41卷 / A4期
关键词
Modified KdV equation; Galerkin method; Solitary waves; Soliton; B-spline; 1-SOLITON SOLUTION; SOLITON-SOLUTIONS; KDV EQUATION; BOUSSINESQ; BURGER; LAW;
D O I
10.1007/s40995-017-0238-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a lumped Galerkin method is applied with cubic B-spline interpolation functions to find the numerical solution of the modified Korteweg-de Vries (mKdV) equation. Test problems including motion of single solitary wave, interaction of two solitons, interaction of three solitons, and evolution of solitons are solved to verify the proposed method by calculating the error norms L-2 and L-infinity and the conserved quantities mass, momentum and energy. Applying the von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. Consequently, the obtained results are found to be harmony with the some recent results.
引用
收藏
页码:1109 / 1121
页数:13
相关论文
共 34 条
[1]   Solitary waves and conservation laws of Bona-Chen equations [J].
Biswas, A. ;
Krishnan, E. V. ;
Suarez, P. ;
Kara, A. H. ;
Kumar, S. .
INDIAN JOURNAL OF PHYSICS, 2013, 87 (02) :169-175
[2]   Numerical simulation of the modified Korteweg-de Vries equation [J].
Biswas, A. ;
Raslan, K. R. .
PHYSICS OF WAVE PHENOMENA, 2011, 19 (02) :142-147
[3]   1-Soliton solution of the coupled KdV equation and Gear-Grimshaw model [J].
Biswas, Anjan ;
Ismail, M. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) :3662-3670
[4]   1-Soliton solution of Benjamin-Bona-Mahoney equation with dual-power law nonlinearity [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) :2744-2746
[5]   Direct dynamical energy cascade in the modified KdV equation [J].
Dutykh, Denys ;
Tobisch, Elena .
PHYSICA D-NONLINEAR PHENOMENA, 2015, 297 :76-87
[6]   Primitive potentials and bounded solutions of the KdV equation [J].
Dyachenko, S. ;
Zakharov, D. ;
Zakharov, V. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 :148-156
[7]   Stable spectral collocation solutions to a class of Benjamin Bona Mahony initial value problems [J].
Gheorghiu, C. I. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 :1090-1099
[8]  
Girgis L., 2010, INT J OCEANS OCEANOG, V4, P45
[9]   Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models [J].
Greenwood, Charles ;
Christie, David ;
Venugopal, Vengatesan ;
Morrison, James ;
Vogler, Arne .
ENERGY, 2016, 113 :258-266
[10]  
Haq S, 2010, SELCUK J APPL MATH, V11, P43