On solutions of Neumann boundary value problem for the Lienard type equation

被引:2
作者
Atslega, S. [1 ]
机构
[1] Daugavpils Univ, LV-5400 Daugavpils, Latvia
关键词
Neumann boundary value problem; Lienard equation; critical points; homoclinic solutions; conservative equation;
D O I
10.3846/1392-6292.2008.13.161-169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide conditions on the functions f(x) and g(x), which ensure the existence of solutions to the Neumann boundary value problem for the equation x '' + f(x)x'(2) + g(x) = 0.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 7 条
[1]   Multiplicity results for the neumann boundary value problem [J].
Atslega, S. .
MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (02) :179-186
[2]  
Burton T.A., 1991, FUNKC EKVACIOJ-SER I, V34, P529
[3]  
HARA T, 1988, FUNKC EKVACIOJ-SER I, V3, P221
[4]  
OGORODNIKOVA S, 2005, DIFF EQUAT, V5, P24
[5]   On the period function of x"+f(x)x′2+g(x)=0 [J].
Sabatini, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (01) :151-168
[6]  
SAKATA S., 1994, FUNKC EKVACIOJ-SER I, V37, P155
[7]  
Sansone G., 1954, ORDINARY DIFFERENTIA, V2